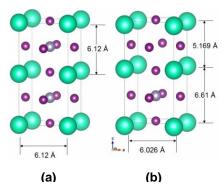
Material characterization of lead free air stable Cs₂SnI₆ and its quantum dot for perovskite solar cells

Uni.Tokvo¹, Kyu.Inst.Tech.², Uni.Miya.³, Uni.Elect.⁴, Adv.Ind.Sc.&Tech.⁵


^oGaurav Kapil¹, Takeshi Ohta², Yuhei Ogomi², Tsuguo Koyonagi², Kenji Yoshino³, Qin Shen⁴,

Takurou N. Murakami⁵, Hiroshi Segawa¹, Shuzi Hayase²

E-mail: kapil@dsc.rcast.u-tokyo.ac.jp

Introduction

Tin(Sn) based perovskite solar cells are relatively more environmental friendly compared to lead(Pb) based counterparts. Attempts have been made to replace Pb with Sn in perovskite structure such as MASnI₃, CsSnI₃ etc. [1, 2]. However, Sn based perovskite materials are very sensitive to the ambient atmosphere. Recently Cs₂SnI₆ (Fig.1) have been introduced as a variant of perovskite capturing interest among researchers owing to its better moisture and air stability [2]. Fig. 1 (a) CsSnI₃ (b) Cs₂SnI₆ structure

Here, in this study first time efforts are being directed for measuring the physical properties of the material and quantum dot to evaluate the potential as a light absorber in solar cells.

Experiments

Bulk & Quantum dot (QD) of Cs₂SnI₆ was synthesized. The characterization of thin films was done using Hall-Effect(HE), Microwave photoconductivity decay(MPD) and Photoluminescence(PL) study. Ultraviolet-visible spectroscopy(UV), X-ray diffraction(XRD) and transmission electron microscopy(TEM) were used to confirm the formation of the material and quantum dot.

Results and Discussion

Fig. 2 is the TEM image which shows the successful formation of quantum dot of the material. HE measurement shows n-type nature of Cs₂SnI₆ material when doped with Sn²⁺ depicts p-type semiconductor behavior. Carrier mobility value of 4.64cm²/V-sec was obtained for bulk material which is comparable to high quality thin film MAPbI₃. Carrier concentration obtained was in the range of 10¹⁴/cm³ which is

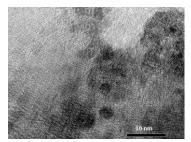


Fig. 2 TEM image for QD

less than MAPbI₃ based perovskite materials. Further PL study shows the low value of carrier life time in the range of 10-15 ps for these materials owing to the possibility of high trap states.

References

1. Y. Ogomi & S. Hayase et.al, The Jour. Phy. Che. Lett. 2014, 5, 1004-1011.

2. C. C. Stoupmpos & M. Kanatzidis et.al, Inorg. Chem. 2013, 52, 9019-9038.