Spin-orbit torque induced magnetization switching in W/CoFeB/MgO

Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.¹, CSIS, Tohoku Univ.²,

CIES, Tohoku Univ.³, WPI-AIMR, Tohoku Univ.⁴

°C. Zhang¹, S. Fukami^{2,3}, S. DuttaGupta¹, H. Sato^{2,3}, F. Matsukura^{1,2,4}, and H. Ohno^{1,2,3,4}

E-mail: zhang@riec.tohoku.ac.jp

Spin-orbit torque (SOT) induced magnetization switching attracts great attention in these years as a new switching scheme for magnetic tunnel junction devices ^[1]. We previously studied the SOT-induced switching in perpendicularly magnetized Ta/CoFeB/MgO structure with various sizes down to single-domain scale, and found that the switching current density J_{th} strongly depends on the device size. When the size is less than about 100 nm, J_{th} is more than about 3×10^{12} A/m², which needs to be reduced for applications ^[2]. To achieve it, we here study the SOT-induced switching in W/CoFeB/MgO structure, in which a larger spin Hall angle θ_{SH} was reported in an in-plane magnetized geometry ^[3].

W(5)/CoFeB(1.3)/MgO(1.2)/Ta(1) film is patterned into a single CoFeB dot (diameter : 120 nm) on top of W Hall bars. Magnetization switching is induced by pulsed currents with various durations τ under an in-plane magnetic field (20 mT) along the current direction and is measured by anomalous Hall resistance measurement. We evaluate the switching probability P_{sw} and define J_{th} as the current density for $P_{sw} = 50\%$.

Figure 1 shows J_{th} in W/CoFeB/MgO structure as a function of τ^{-1} . For comparison, the result for

Ta/CoFeB/MgO is also shown. J_{th} of W/CoFeB/MgO is about half of that in Ta/CoFeB/MgO. While for Ta/CoFeB/MgO the switching cannot be observed at $\tau < 2$ ns, the W/CoFeB/MgO shows switching at $\tau = 600$ ps. This can be attributed to the larger θ_{SH} of W. We fit a linear function to $J_{th}-\tau^{-1}$ in the range of $\tau^{-1} > 0.2$ GHz, and obtain the J_{th} at $\tau^{-1} = 0$ to be 1.5×10^{12} A/m². Then, the effective θ_{SH} can be derived to be 0.6 ^[4], which is significantly larger than that in Ta in our previous work ^[2]. Note that actual θ_{SH}^{eff} should be smaller than the obtained value

Fig. 1. τ^1 dependence of J_{th} for W (Ta)/CoFeB/MgO structures.

because the effects of incoherent reversal and field-like torque are neglected here.

This work was supported by R&D project for ICT Key Technology of MEXT, ImPACT Program of CSTI, IIARE of Tohoku University, and JSPS KAKENHI Grant Number 15J04691.

- [1] L. Q. Liu *et al.*, Science **336**, 555 (2012).
- [2] C. Zhang et al., Appl. Phys. Lett. 107, 012407 (2015).
- [3] C.-F. Pai *et al.*, APL **101**, 122404 (2012).
- [4] K.-S. Lee et al., Appl. Phys. Lett. 102, 112410 (2013).