## ALD Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge 界面の電子と正孔に対する遅い準位の物理的起源に関する考察

Study on physical origins of slow traps for electrons and holes in ALD Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge interfaces

## <sup>0</sup>柯 夢南, 竹中 充, 高木 信一

東大院・エ

<sup>0</sup>M. Ke, M. Takenaka, and S. Takagi

The University of Tokyo, School of Engineering

E-mail: kiramn@mosfet.t.u-tokyo.ac.jp

**Introduction** Ge is an attracting channel material for next generation MOSFETs because of the higher electron and hole mobility than Si. Here, the GeO<sub>2</sub>/Ge structure is one of the most promising Ge surface passivation layers because a low interface trap density (D<sub>it</sub>) has been expected [1-4]. As one of the realistic gate stacks, we have proposed and demonstrated high-k/GeO<sub>x</sub>/Ge structures realized by plasma post oxidation (PPO), such as Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge and HfO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge, which have been shown to have 1 nm or thinner equivalent oxidation thickness (EOT) and low D<sub>it</sub> of ~10<sup>11</sup> eV<sup>-1</sup>cm<sup>-2</sup> [5, 6]. However, a large amount of slow traps included in these gate stacks is one of the remaining most critical issue [7-9].

While any defects in  $Al_2O_3$  have been reported to be responsible for this slow trapping [9], we have recently found that the slow traps for electrons could exist inside  $GeO_x$ formed by PPO [10]. However, the physical origin of the slow trap generation for electrons and holes has not been understood yet. In this study, we systematically compare the slow trap density of electron and holes for the  $Al_2O_3/GeO_x/$ Ge interfaces with different GeO<sub>x</sub> thickness prepared by post or pre plasma oxidation for ALD  $Al_2O_3/Ge$  stacks [11, 12].

Experiments N- and p-type (100) Ge wafers were cleaned by de-ionized water, acetone and HF. After this pre-cleaning, plasma pre- oxidation was performed by using ECR plasma of Ar (9 sccm) and O<sub>2</sub> (3 sccm) at 300 °C under 650 W RF power for 1-4 s to form  $GeO_x$  with the different thickness. Subsequently, 1.5 to 2.4-nm-thick Al<sub>2</sub>O<sub>3</sub> was deposited at 300°C by ALD. Post deposition annealing (PDA) was performed for 30 min at 400 °C in N<sub>2</sub> ambient, followed by formation of 100-nm-thick Au gate electrodes and 100-nmthick Al back contacts by thermal evaporation. The slow trap density  $(\Delta N_{st})$  is evaluated from hysteresis in the C-V sweep of the fabricated MOS capacitors as a function of the effective oxide field ( $E_{ox}$ ). Here,  $E_{ox}$  and  $\Delta N_{st}$  are determined by  $E_{ox} = (V_G - V_{FB})/CET$  and  $q \Delta N_{st} = C_{ox} \Delta V_{hys}$  [9]. **Results and Discussions** Fig. 1 shows  $\Delta N_{st}$  of Al<sub>2</sub>O<sub>3</sub>(1.5 nm)/GeO<sub>x</sub>/Ge with plasma pre-oxidation as a parameter of the GeO<sub>x</sub> thickness. It is found that  $\Delta N_{st}$  for holes in the Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/p-Ge MOS interfaces has the GeO<sub>x</sub> thickness variation, while  $\Delta N_{st}$  for electrons in the Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/n-Ge MOS interfaces has no dependence. This phenomenon indicates that slow traps for electrons and holes exist in different positions in the Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge MOS interfaces. Fig. 2 show a schematic diagram of possible locations of slow traps in the Al<sub>2</sub>O<sub>3</sub>/GeO<sub>x</sub>/Ge MOS interfaces. The meaningful GeOx thickness dependence and almost no Al2O3 thickness dependence of  $\Delta N_{st}$  for the p-Ge MOS capacitors suggest that slow traps for holes can locate around the Al2O3/GeOx interface. Also, the smaller hysteresis and smaller  $\Delta N_{st}$  for the p-Ge capacitors indicate that slow trap density for holes is smaller than that for electrons. On the other hand, almost no GeOx and Al2O3 thickness dependencies of  $\Delta N_{st}$  for the n-Ge capacitors suggest that slow traps for electrons can locate near the GeOx/Ge MOS interfaces. It is also found in Fig. 3 that  $\Delta N_{st}$  of electrons is significantly higher for plasma post-oxidation than that for plasma pre-oxidation. This result indicates that slow traps near the Ge conduction band side are additionally generated during the PPO process. A possible origin of this slow trap generation during PPO is some reaction of Al<sub>2</sub>O<sub>3</sub> and GeO<sub>x</sub>,

and/or inter-diffusion of Al and Ge. On the other hand, there is no additional traps generate during PPO near the Ge valence band side, as seen in Fig. 3.

**Conclusion** The main slow traps in the  $Al_2O_3/GeO_x/Ge$ interfaces can locate near the  $GeO_x/Ge$  interfaces for electrons and near the  $Al_2O_3/GeO_x$  interfaces for holes. It has been revealed that slow traps for electrons are additionally generated during the PPO process near conduction band side. **Acknowledgement** This work was partly supported by JST-CREST Grant Number JPMJCR1332, Japan and a Grant-in-Aid for Scientific Research (No. 26249038) from MEXT.

**References** [1] D. Kuzum et al, EDL, 29 (2008)328 [2] H. Matsubara et al, APL, 93 (2008) 032104 [3] T. Sasada et al, JAP, 106 (2009) 073716 [4] Y. Fukuda et al, JJAP, 44 (2005) 7928 [5] R. Zhang et al, APL, 98 (2011) 112902 [6] R. Zhang et al, TED, 60 (2013) 927 [7] R. Zhang et al, IEDM, (2011) 642 [8] J. Franco et al, IEDM, (2013) 397 [9] G. Groeseneken et al, IEDM, (2014) 828 [10] M. Ke et al, APL, 109 (2016) 032101 [11] R. Zhang et al, JES, 158 (2011) 178 [12] L. Nyns et al, ECS Tran, 35 (2011) 465 [13] M. Ke et al, MEE, 147 (2015) 244.







*Fig.2: schematic diagram of possible position and origin of slow traps of 1.5-nm-thick* Al<sub>2</sub>O<sub>3</sub>/1.04-nm-thick GeO<sub>x</sub>/n- and p-Ge



