Observation of antiparallel Ru-Ir spins in SrRuO₃-SrIrO₃ heterointerface 東大院工¹, 理研 CEMS², JST さきがけ³, JASRI⁴, 東北大理⁵, 東大新領域⁶ ^o(D)大内 祐貴¹, 松野 丈夫^{2,3}, 鈴木 基寛⁴, 是常 隆^{3,5}, 有田 亮太郎², 小塚 裕介¹, 打田 正輝¹, 有馬 孝尚^{2,6}, 十倉 好紀^{1,2}, 川崎 雅司^{1,2}

Dept. of Appl. Phys., the Univ. of Tokyo¹, RIKEN CEMS², JST PRESTO³, JASRI⁴,

Dept. of Physics, Tohoku Univ.⁵, Dept. Adv. Mater. Sci., the Univ. of Tokyo⁶

^oYuki Ohuchi¹, Jobu Matsuno^{2,3}, Motohiro Suzuki⁴, Takashi Koretsune^{3,5}, Ryotaro Arita²,

Yusuke Kozuka¹, Masaki Uchida¹, Taka-hisa Arima^{2,6}, Yoshinori Tokura^{1,2}, Masashi Kawasaki^{1,2}

E-mail: ohuchi@kwsk.t.u-tokyo.ac.jp

Intriguing phenomena in spintronic devices have been arising in heterostructures of ferromagnets and non-magnetic materials with strong spin-orbit coupling (SOC) [1-3]. In addition to the metallic systems, heterostructures composed of epitaxially grown oxides can provide a new point of view in understanding the interface physics and designing more efficient systems. One of such oxides is the perovskite-based heterostructure composed of ferromagnetic SrRuO₃ and non-magnetic SrIrO₃, where strong SOC in SrIrO₃ induces interface-driven topological Hall effect associated with magnetic skyrmions [4].

Here we investigate magnetic proximity effect in SrIrO₃ neighboring SrRuO₃ by x-ray magnetic circular dichroism (XMCD) at SPring-8 BL39XU. We prepared the epitaxial superlattice of SrRuO₃ (5 unit cells) and SrIrO₃ (3 unit cells) on a SrTiO₃ substrate by pulsed laser deposition method [Fig. 1(a)]. XMCD signals at the Ir L_3 and L_2 edges observed at 25 K [Fig. 1(b)]. The induced are magnetization is as small as 0.02 $\mu_{\rm B}$ /Ir, which is antiparallel to the magnetization of SrRuO₃. By applying the sum rules, we clarified that the orbital component in the Ir magnetic moment is 0.01 $\mu_{\rm B}$ /Ir. This large proportion of the orbital magnetic moment is in contrast with the conventional metallic systems such as Pt/Co. These results and theoretical calculation suggest that SOC in SrIrO₃ plays an important role in the proximity induced magnetization.

[1] I. M. Miron *et al.*, Nat. Mater. **10**, 419 (2011).

- [2] J. Sinova et al., Rev. Mod. Phys. 87, 1213 (2015).
- [3] A. Fert et al., Nat. Nanotechnol. 8, 263 (2013).
- [4] J. Matsuno et al., Sci. Adv. 2, e1600304 (2016).

Fig. 1: (a) Schematic of proximity induced Ir-magnetization in $SrRuO_3/SrIrO_3$ superlattice. (b) XMCD signals at the Ir- L_3 edge (top) and Ir- L_2 edge (bottom) at 25 K.