Magnetic properties of perpendicularly magnetized Mn₄N thin films deposited on MgO and STO substrates, for current-induced domain-wall motion devices

<u>T. Gushi^{1*}</u>, L. Vila², J. P. Attané², O. Fruchart², A. Marty², S. Pizzini³, F. Takata¹, A. Anzai¹ and T. Suemasu¹ 1.Inst. of Appl. Phys., Univ. of Tsukuba, Japan, 2. Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC, SPINTEC, France, 3. Univ. Grenoble Alpes, CNRS, Institut Néel, France

E-mail: bk201011030@s.bk.tsukuba.ac.jp

[**Introduction**] We show that ferrimagnetic Mn₄N thin films possess a high potential for the development of devices based on current-induced domain wall motion (CIDWM). Composed only of abundant elements, this system has a high perpendicular anisotropy ($\mu_0 H_K$ about 3 T), and a very small $\mu_0 M_S$ (0.14 T) [1,2]. Therefore, Mn₄N is an attracting candidate to achieve fast CIDWM at low current densities.

[Experiment] We evaluate and compare magnetic properties of Mn₄N films grown on MgO or SrTiO₃ (STO) substrates. Single crystalline Mn₄N films have been deposited at 450 °C using molecular beam epitaxy [2], with a 3-nm-thick SiO₂ cap. We report Magneto-transport, and magnetic configuration observed using magnetic force microscopy (MFM) and magneto-optical Kerr microscopy.

[**Result and discussion**] Figure 1 shows the hysteresis loops (minor for B) of anomalous Hall resistivity ρ_{AHE} for each Mn₄N film. Concerning films on MgO, the thicker one (A) has better properties than the thinner one (B), with a lower coercivity and a higher remanence. Sample C on STO, exhibits an even smaller coercivity, a perfect remanence and a sharper magnetization switching.

Figures 2 are domain structures of Mn₄N films after demagnetization. Samples on MgO show sub- μ m domains, much smaller than what would be expected at equilibrium from the small M_S and large K_u of Mn₄N. In contrast, the sample on STO has mm-size domains. In addition, the smoothness of the DWs in the latter indicates that there are few DW pinning sites, consistent with the sharp magnetization switching. We attribute the differences between the two substrates to the large misfit between MgO(100) and Mn₄N(100) (-8%), leading to defects that pin DWs. Because of the strain relaxation in the vicinity of the interface, the importance of these defect is more prominent in the thinner film on MgO.

By using STO substrates instead of MgO, we greatly improved the magnetic properties of the Mn₄N layer. With a moderate coercivity (given M_s), macroscopic domains, smooth DWs, and a square hysteresis loop, Mn₄N/STO layers have a great potential for current-induced DW motion.

[Acknowledgement] This work was financially supported in part by JSPS (No. 26249037, 16J02879).

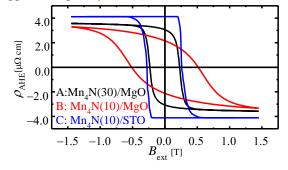


Figure 1: Hysteresis loops obtained by anomalous Hall effect.

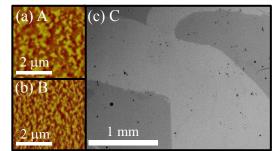


Figure 2: MFM images of the domain structure after demagnetization for samples A (a) and B (b). (c) Magneto-optical Kerr microscopy image for sample C.

[References]

- [1] K. Kabara et. al. J. Appl. Phys. 117, 17B512 (2015).
- [2] Y. Yasutomi et. al. J. Appl. Phys. 115, 17A935 (2014).