Calibration of A Calorimeter for High Power Soft X-Ray Lasers

高出力軟 X 線レーザー用カロリメーターの較正

QST¹, Tohoku Univ.², Utsunomiya Univ.³, Waseda Univ.⁴, NTT-AT⁵, JASRI⁶, Riken⁷, Univ. Hyogo⁸

[°]T-H. Dinh¹, M. Nishikino¹, M. Ishino¹, T. Hatano², T. Tamura³, T. Ogura³,

H. Hara³, K. Sakaue⁴, S. Ichimaru⁵, Y. Inubushi⁶, A. Kon⁶, S. Ohwada⁷,

H. Kinoshita⁸, N. Hasegawa¹, T. Higashiguchi³, H. Washio⁴

量研¹, 東北大², 宇大院工³, 早大高等研⁴, NTT-AT⁵, JASRI⁶, 理研⁷, 兵庫県立大⁸

^Oヂン タンフン¹, 錦野 将元¹, 石野 雅彦¹, 羽多野 忠², 田村 賢紀³, 小倉 拓人³,

原 広行³,坂上 和之⁴,市丸 智⁵,犬伏 雄一⁶,今 亮⁶,大和田 成起⁷,

木下 博雄⁸,長谷川 登¹,東口 武史³,鷲尾 方一⁴

E-mail: dinh.thanhhung@qst.go.jp

Physics of ultra-short pulse x-ray laser ablation is great interest for applications in x-ray optics design, coherent x-ray processing, and so on. In QST, we have been used a plasma x-ray laser, operated at a wavelength of 13.9 nm, a pulse duration of 7 ps and a pulse energy of sub- μ J, to investigate damage threshold of many materials. However, a question on the dependence of the ablation threshold on the pulse duration still remains. Fortunately, at the Japanese x-ray free-electron laser (FEL) facility, SACLA, the beamline-1 (BL1), which provides FEL light at soft x-ray regions with a pulse duration of 200~300 fs and pulse energy of ~100 μ J, was started operation for users, recently [1]. For the comparison study of pulse duration dependence using the two lasers, evaluation of pulse energy irradiated on target with high accuracy is required.

A compact calorimeter, which consists of an x-ray charge-coupled device (CCD) and x-ray filters was used to measure the pulse energy of the lasers. A set of x-ray filter was employed as an attenuator to reduced energy of the laser beam before reach to the surface of the CCD. By changing the thickness of the x-ray filters, a wide range energy could be measured by our calorimeter. The sensitivity of the CCD and thickness of the x-ray filters were evaluated at the beam line 11D (BL11D) of the Photon Factory.

In this presentation, the detail calibration of the calorimeter is reported.

[1] K. Togawa et al., Proc. IPAC 2017, 1209 (2017).