MgドープGaNのレーザー誘起による活性化とその局所制御

Laser Induced Activation of Mg doped GaN and the Local Control of the Activation

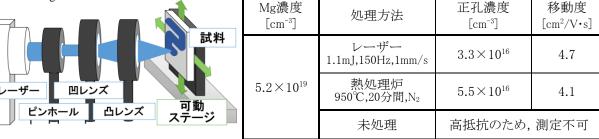
豊田工大¹, 立命館大学² ○(M1)松本滉大¹, 黒瀬範子², 下野貴史¹,

岩田直高1,山田郁彦1,神谷格1,青柳克信2

Toyota Tech. Institute¹, Ritsumeikan Univ. ², Kota Matsumoto¹, Noriko Kurose², Takafumi Shimono¹, Naotaka Iwata¹, Fumihiko Yamada¹, Itaru Kamiya¹, and Yoshinobu Aoyagi²

E-mail: sd17433@toyota-ti.ac.jp

<u>はじめに</u>


MOCVDで成長したMgドープGaNは、p型化のために活性化熱処理を施すことが一般的である.これは、エピ膜中の水素を外部に排出する必要があるためであり口、この時ドーパントの拡散や界面への偏析などの不具合が生じると共に、平面上の任意の場所のp型化(局所制御)は困難である.もしレーザー光を用いた処理により、ドーパントの拡散が抑えられた急峻なp型層の形成が局所制御と同時に実現できれば、縦型デバイスでの横方向電流狭窄を容易に行うことができる.我々は193nmで発振するArFエキシマレーザーがGaNに強く吸収され、10nsのきわめて短い間にエピ薄膜を高温化できることに着目し、MgドープGaN膜に対するレーザー誘起活性化を試みた.

<u>実験結果</u>

試料は、Si並びにサファイア基板上にMOCVDで形成したMgドープGaNである。Si基板上GaN 試料は、Si基板上にバッファ層を 4.4μ m設け、GaN層を 0.6μ m、その上に 5.2×10^{19} cm⁻³の濃度でMg をドーピングした厚さ 1.1μ mのGaN層を配した構造である。Fig.1にエキシマレーザーを用いた活性 化実験系を示す。試料はXY軸可動のステージに取り付けられ、レーザーを照射しながら任意の速度 $(0.5\sim1.0 \text{mm/s})$ で動かすことができる。エキシマレーザーの出力は $0.8\sim7.0 \text{mJ}$,繰り返しは $10\sim150 \text{Hz}$ である。照射後はホール効果並びにI-V特性から活性化の評価を行った。電極はAu/Niである。Si基板上のMgドープGaN膜では、照射前後で表面荒れは見受けられなかった。Table1に、Si基板試料に対し、レーザー照射した場合、熱処理炉で処理した場合並びに未処理のMgドープGaN のホール効果測定結果を示す。レーザー照射した試料は、熱処理炉で処理した試料と同様にp型に活性化されることが分った。サファイア基板上の試料では、 10^{17}cm^{-3} 台の正孔濃度が得られた。

Fig.1 Example of local activation experiment using excimer laser

Table1 Hall effect measurement result of Mg doped GaN on Si substrate

参考文献 [1] S.Nakamura et al., Jpn. J. Appl. Phys. Vol. 31 pp. 139-142, 1992.