熱電特性向上に向けた Ga-doped ZnO 多結晶薄膜の膜質制御

Thermoelectric property of Ga-doped ZnO films with controlled quality 阪大院基礎工¹, CREST- JST²

○留田 純希 ¹, 石部 貴史 ¹, 渡辺 健太郎 ^{1,2}, 中村 芳明 ^{1,2} Osaka Univ. ¹, CREST- JST ²

°Atsuki Tomeda¹, Takafumi Ishibe¹, Kentaro Watanabe^{1,2}, and Yoshiaki Nakamura^{1,2} E-mail: u632177f@ecs.osaka-u.ac.jp

【目的】ZnO は酸化物の中で高いゼーベック係数 S と電気伝導率 σ を有し、可視光領域で透明であるため、その薄膜は透明熱電材料としての応用が期待される [1]。 しかし、産業利用には性能が不十分であり、熱伝導率 κ が高いことが問題である。ZnO のドーパントは Al か Ga を用いることが主流であるが、Ga は重元素のため熱伝導率の低減が期待できる。 しかし、Ga ドープ ZnO (GZO)薄膜の熱電特性はほとんど報告がない。そこで本研究では、GZO 薄膜の熱電特性を詳細に調べることを目的とした。今回、膜質の異なる GZO 薄膜を作製し、その膜質(結晶サイズ、C 軸配向性)の熱電特性への影響を明らかにしたので報告する。

【方法】低結晶性を狙ったゾルゲル法では、まず前駆体溶液を調製し(Zn 濃度: 0.5 M、Ga ドープ濃度: $0.5\sim2$ at.%、撹拌条件: 60° C、ZnC、溶液を基板(ZnC(ZnC)上にスピンコート法で塗布した。その後、大気下、ZnCの ZnC Zn

【結果】Figure (a)、(b)は、GZO 薄膜の表面 SEM 像である。作製法により粒径サイズ、膜の緻密さが異なることが分かった。XRD ω -2 θ スキャンカーブ(Fig.(c))からも、c 軸配向において膜質が異なることが確認できた。これらの試料の熱電特性は、膜質に大きく依存し、膜質の良い PLD 法で作製した試料においては、出力因子($S^2\sigma$)が 2.85 μ W/cmK²となった。本講演では、結晶サイズ・配向性による熱電特性への影響について発表する。

【謝辞】本研究の一部は、科研費 基盤研究 A(16H02078)、 挑戦的萌芽研究(15K13276)、ナノテクプラットフォーム (S-17-OS-0025) の支援により行われた。

[1] T. Ishibe, et al., J. Electron. Mater. 46, 3020 (2017).

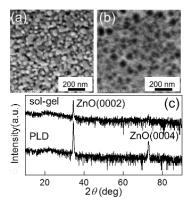


Fig. Plan-view SEM images of 0.5 at% GZO films formed by (a) sol-gel method and (b) PLD. (c) XRD ω -2 θ scan curves.