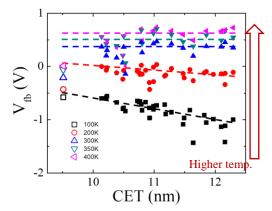
Anomalous temperature dependence of dipole layer strength at the Al₂O₃/SiO₂ interface

°Siri Nittayakasetwat, Hironobu Kamata, and Koji Kita,

Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan E-mail: siri.n@scio.t.u-tokyo.ac.jp


Several models have been developed to explain the physical origin of the dipole layer formation at high-k/SiO₂ interfaces. One of the possible models considers the relative difference in oxygen density at high-k/SiO₂ interface as the driving force of the dipole layer formation [1]. However, none of those models reported on the effect of temperature on the interface dipole layer strength. For a wider range of application, it is crucial to comprehend its behavior with the change in temperature. In this study, we investigated the temperature dependence of dipole layer strength in $Al_2O_3/SiO_2/Si$ MOS stacks from 100K to 400K.

The capacitors were fabricated on a p-type Si wafer with a thermally grown ~10 nm SiO₂ top layer. After the RCA cleaning, a wedge-shaped Al_2O_3 was deposited using rf sputtering. The post-deposition annealing was performed at 800°C in 0.1% O₂ ambient for 5 min. Finally, Au metal was deposited by vapor evaporation. The flatband voltages (V_{fb}) were extracted from C-V curves at various temperatures with the frequency of 1MHz.

A series of V_{fb} was obtained from various Al₂O₃ thicknesses and extrapolated to the point where the Al₂O₃ thickness became zero, to determine the dipole layer strength of Al₂O₃/SiO₂ by removing the influence of fixed charges in the stacks. The series of V_{fb} as a function of capacitance equivalent thickness (CET) at different temperatures is shown in Fig. 1. The magnitude of the slope (dV_{fb}/dCET) corresponds to the density of fixed charges in the stack. Figure 2 shows the correlation between the dipole strength and temperature. From 100K to 300K, the dipole strength changed approximately at the rate of 2-3 mV/K, though the rate reduced at higher temperatures. This rate is surprisingly larger than what we expected from a simple consideration of volume expansion. The dipole strength can be increased by lengthening the distance between two opposite charges; however, the thermal expansion coefficient for Al₂O₃ and SiO₂ only ranges in the order of 10^{-6} K⁻¹ [2], and 10^{-7} K⁻¹ [3], respectively. Thus, it is clear that other anomalous factors contributed to the unexpectedly large change of dipole strength at Al₂O₃/SiO₂ interfaces with temperature. *Acknowledgement: This work was partly supported by JSPS KAKENHI*

[1]K. Kita, and A.Toriumi, Appl. Phys. Lett., 94, 132902 (2009).

[]]]. Tudu et ul., *5.* Appl. Thys., **67**, 4105 (2000).

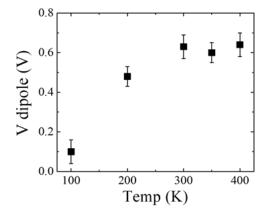


Fig. 1. V_{fb} vs CET at different temperature for $Al_2O_3/SiO_2/Si$ stack. The open and solid symbols represent V_{fb} of SiO_2/Si and $Al_2O_3/SiO_2/Si$ stacks, respectively.

Fig. 2. Temperature dependence of the interface dipole layer strength of the Al_2O_3/SiO_2 interface.

^[2]S. Skirl et al., Acta Mater., 46, 2493 (1998).
[3]H. Tada et al., J. Appl. Phys., 87, 4189 (2000).