Quantification of Dzyaloshinskii-Moriya interaction from thermally-activated and flow regime domain wall motion

RIEC¹/CSRN²/CSIS³/CIES⁴/WPI-AIMR⁵, Tohoku University

Samik DuttaGupta¹², Chaoliang Zhang¹³, Shunsuke Fukami¹⁴, and Hideo Ohno¹⁵

E-mail: sgd@riec.tohoku.ac.jp

Spin-orbit torque (SOT) induced domain wall (DW) motion in non-magnet/ferromagnet/oxide systems is a promising concept for three terminal spintronics devices¹. The asymmetry of stack structure results in an interfacial Dzyaloshinskii-Moriya interaction (DMI) which plays a pivotal role for fast SOT-driven DW motion²-⁴. Thus, understanding the manifestation of DMI-induced effective field (H_{DMI}) is important.

Thermally-activated DW motion under magnetic fields (H_Z and H_X) is proposed to offer quantitative information about H_{DMI}⁵. However, the role of H_{DMI} from this regime is greatly debated and demands a quantitative comparison of H_{DMI} between dynamically different regime of DW motion, i.e., flow regime⁶,⁷.

Multilayers utilized in this study are W(5)/CoFeB(1.1)/MgO(2)/Ta(1) (W/CoFeB) and Ta(4)/Pt(3)/Co(0.3)/Ni(0.6)/Co(0.3)/MgO(1.5)/Ru(1) (Pt/[Co/Ni]) (in nm). To evaluate DMI from thermally-activated regime, we investigate H_X dependence of bubble expansion under H_Z. DW velocity (v) vs H_X curve indicates $\mu_0 H_{DMI} = 14 \pm 5$ mT for W/CoFeB (Fig. 1(a)), whereas miniscule value ($\mu_0 H_{DMI} \approx 0 \pm 10$ mT) for Pt/[Co/Ni] (Fig. 1(b)). We also investigate H_X dependence of current-driven DW motion in flow regime for both the samples. The results shown in Fig. 1(c) and (d) indicate non-zero DMI for both the structures ($\mu_0 H_{DMI} = 14 \pm 0.5$ mT for W/CoFeB and 176 ± 10 mT for Pt/[Co/Ni]). Only the result for Pt/[Co/Ni] in thermally-activated regime does not agree with previous study. We find that an accurate determination of DMI strength is possible only when DW motion satisfies a creep scaling law for the thermally-activated regime, whereas the flow-regime experiment is versatile for quantification of DMI.

A portion of this work was supported by the R&D Project for ICT Key Technology to Realize Future Society of MEXT, ImPACT Program of CSTI, JST-OPERA, and JSPS KAKENHI 17H06093.

Fig. 1: (a) v vs H_X at constant H_Z for W/CoFeB in TA regime. (b) v vs H_X for Pt/Co/Ni system in TA regime. (c) Flow regime v vs H_X curve at current ($J = 9.67 \times 10^{11}$ A/m² for W/CoFeB system. (d) v vs H_X at $J = 1.04 \times 10^{12}$ A/m² for Pt/Co/Ni system.