4H-SiC における基底面部分転位の収縮および 貫通刃状転位への変換現象に関する分子動力学解析

Molecular Dynamics Simulations for Constriction of Basal Plane Partial Dislocations

and Conversion to Threading Edge Dislocation in 4H-SiC

東大工, ⁰田村 陽平, 榊間 大輝, 高本 聡, 波田野 明日可, 泉 聡志

Univ. of Tokyo, [°]Yohei Tamura, Hiroki Sakakima, So Takamoto, Asuka Hatano, Satoshi Izumi

E-mail: tamura.yohei@fml.t.u-tokyo.ac.jp

【はじめに】次世代パワーデバイスとして注目されている4H-SiC半導体素子は、内在する基底面転位(以下 BPD)により素子性能が低下することが知られている.BPDを減少させるために、基板上にエピタキシャル膜を形成し、BPDを貫通刃状転位(TED)に変換するプロセスが採用されているが、薄膜成長中の複雑な系であることから、その詳細なメカニズムは不明である.本研究では、BPD-TED変換現象の解明を目的とし、分子動力学解析を行った.

【1. BPD 部分転位の移動度解析】BPD は結晶内 でショックレーの部分転位に分解して存在して いる.4種の部分転位が存在し、それぞれ移動度 が異なることが知られている.それぞれの部分転 位に対して原子数約13万の系を作成し、NEB 法 を用いて Kink 形成の活性化エネルギーを計算し た.Table 1 に結果を示す.文献[1]より活性化エ ネルギーが高いほど移動度が低く、この結果は従 来の実験結果とよく一致する.

【2. オフ角付基板表面における転位の収縮現 象】4H-SiCのエピ膜は通常,基底面(0001)から僅 かにずれた面を表面とする基板上に成膜される. (0001)面から[1120]方向に8°傾いた面を表面と した約 100 万原子からなる系の表面近傍に,分解 した BPD の 2 本の組を配置し,1000K で 1ns の 間加熱解析を行った.結果,表面と転位の距離が 小さくなるほど転位ペアの幅が収縮することが わかった.これは表面が転位に及ぼす鏡像力[2] の効果であると考えられる.BPD が TED に変換 する際には,分解した 2 本の BPD が収縮し完全 転位となることが必要であるとされている[3]が, オフ角付表面が BPD 部分転位の収縮に重要な役 割を果たしていると考えられる.

【3. らせん BPD の TED への変換】BPD は表面 近傍で TED へ変換すると考えられている. (0001)面から[1120]方向にわずかに傾いた面を 表面とした系の表面近傍に[1120]完全らせん BPDを配置し,500Kで10psのアニールを行った. 結果, Fig. 1.に示す通り,転位端のうち表面との 距離が近い方が急速に[1120]方向に動き, BPD が折れ曲がり, TED へと変換される様子が観察 された. BPD が表面から鏡像力を受け交差すべ りを起こしたと考えられ,そのエネルギー障壁は 非常に低いと考えられる.

【4. BPD の表面近傍における不動化現象】2.節の 解析において, BPD 部分転位が表面近傍で不動 化する現象が見られることがあった. 詳細な解析 の結果, 表面近傍に強い圧縮応力が生じると不動 化することがわかった. 表面近傍に強い圧縮応力 がかかることで表面から原子が飛び出し, 生じた 大量の点欠陥が転位と相互作用することで転位 が不動化したと考えられる転位の不動化は BPD の収縮を妨げ, TED への変換を阻害する現象で ある可能性がある.

eV	30° C	30° Si	90° C	90° Si
Nucleation	1.65	1.16	0.26	0.59
Migration	0.06	0.11	0.31	0.59

 Table 1. Kink nucleation energy and migration energy for Shockley partials.

Before annealing

- Fig. 1. Converion of basal plane perfect dislocation to threading edge dislocation by annealing under 500K during 10 ps, visualized with OVITO[4]. The red lines indicate the dislocation($b = [11\overline{2}0]$), and the blue dots indicate the atoms.
- [1] J. P. Hirth and J. Lothe, 1982.
- [2] D. Hull and D. J. Bacon, 2001.
- [3] S. Chung *et al.*, *J. Appl. Phys.*, vol. 109, no. 9, 2011.
- [4]A. Stukowski, *Model. Simul. Mater. Sci. Eng.*, vol. 18, no. 1, p. 15012, 2010.