後プラズマ及び熱処理による高性能 Top-Gate ZnO TFT の作製

High Performance Top-Gate ZnO TFT Achieved by Post Oxidation and Annealing 東大院工 [°]加藤 公彦, 松井 裕章, 田畑 仁, 竹中 充, 高木 信一 [°]Kimihiko Kato, Hiroaki Matsui, Hitoshi Tabata, Mitsuru Takenaka, Shinichi Takagi

The University of Tokyo E-mail: kkato@mosfet.t.u-tokyo.ac.jp

【背景】 高い電子移動度を有する酸化亜鉛(ZnO)を用いた薄膜トランジスタ(TFT)は、ディ スプレイ応用に加えて、LSI 応用としても近年着目されている。微細化されたトップゲートデバ イスに対しては、膜厚制御や段差被覆性の観点より、ZnO チャネル上への原子層堆積(ALD)法 によるゲート絶縁膜形成が有望である。しかしながら、ALD で用いる金属錯体原料の多くは還元 性を示し、Ge や III-V 半導体表面の自然酸化膜をエッチングすることから¹⁾、酸化物半導体に対 してはより精密な制御が必要と考えられる。絶縁膜/半導体界面制御技術として、これまで我々は、 絶縁膜堆積後の酸素プラズマプロセスを報告している^{2,3)}。本手法ではゲート絶縁膜堆積後に界面 に酸素を供給し、欠陥終端を行う。したがって、トップゲートの ZnO TFT に対しても本手法は有 望と考え、プラズマ処理を中心とした後処理の効果を系統的に調査した。

【試料作製】 SiO₂/p-Si 基板上にパルスレーザー堆積 (PLD) 法により 200°C において膜厚 11-13 nm の ZnO 膜を堆積し、O₂ 雰囲気中で 400°C の熱処理を施した後、希 HCl によりパターニングを 行った。続いて、原子層堆積 (ALD) 法により 200°C において Al₂O₃ ゲート絶縁膜を堆積した。1 および 10 nm の Al₂O₃ 膜を堆積した時点において、post plasma oxidation (PPO) および post O₂ annealing (POA) をそれぞれ施した。TiN ゲートおよび Al ソース/ドレイン電極を形成後、N₂ 雰 囲気において post metallization annealing (PMA) を行った。諸条件および構造を Fig. 1 にまとめる。

【結果および考察】 PPO および POA による TFT の I_d - V_g 特性の変化を Fig. 2 に示す。300°C の PMA により特性が向上することが確認されているため、PMA 後の結果を示している。良好な ON/OFF 特性を得るためには、PPO が必須であることが分かる。これは、Al₂O₃/ZnO 界面に効果的 に酸素を供給することで界面準位密度が減少し、ゲートバイアスにより ZnO のバンド変調が可能 となった結果と考えられる。また、高い I_{ON} も共に実現するためには、PPO に加え POA 処理も重 要であり、Al₂O₃/ZnO 界面特性の改善と ZnO の結晶性の向上によると推測される。本試料におい て、~120 mV/dec.のサブスレショルドスロープ (S.S.) を達成した。 I_d - V_g 特性より求めた電界効果 移動度 (μ_{FE}) を Fig. 3 に示す。ゲート長の増大およびチャネル幅の減少によりピーク μ_{FE} 値が増 大していることより、 I_{ON} は S/D コンタクトや寄生抵抗によっても制限されている可能性が残るも のの、50 cm²/V·s を上回る、多結晶 ZnO バルク値に匹敵する高い μ_{FE} が得られた⁴)。

【結論】 極薄 ZnO チャネル層(~12 nm)を有する TFT のゲートスタック特性向上に向け、後プ ラズマ及び熱処理の効果を明らかにした。PPO、POA 及び PMA の適切な組み合わせが急峻な ON/OFF 動作には必須であり、同時に、とりわけ高いµFEを達成可能であることが明らかとなった。

【参考文献】¹⁾C. L. Hinkle *et al.*, Microelec. Eng. **86**, 1544 (2009).²⁾R. Zhang *et al.*, Appl. Phys. Lett. **98**, 112902 (2011). ³⁾K. Kato *et al.*, Jpn. J. Appl. Phys. **52**, 04CA08 (2013).⁴⁾K. Ellmer *et al.*, Thin Solid Films **516**, 4620 (2008). 【謝辞】本研究は、JST CREST の支援(JPMJCR1332)を受けたものである。

Fig. 1 Fabrication process and structure of top-gate ZnO TFT with various post oxidation and annealing.

Fig. 2 Change in I_{d} - V_{g} characteristics of ZnO TFT with various post treatments.

Fig. 3 Peak field effect mobility of ZnO TFT with optimized post treatment.