High-k/In_{1-x}Si_xO_{1-y}C_yチャネル界面がトランジスタ特性に及ぼす影響

Influence of High-k/ In_{1-x}Si_xO_{1-y}C_y channel interface on transistor characteristics 明治大学¹,物材機構²

^o栗島 一徳^{1,2}, 生田目 俊秀², 女屋 崇^{1,2}, 木津 たきお², 塚越 一仁², 大井 暁彦², 池田 直樹², 知京 豊裕², 小椋 厚志¹ Meiji Univ.¹, NIMS²

[°]K. Kurishima^{1, 2}, T. Nabatame², T. Onaya^{1, 2}, T. Kizu², K. Tsukagoshi², A. Ohi², N. Ikeda², T. Chikyow², and A. Ogura¹ E-mail: <u>kuri1109@meiji.ac.jp</u>

【はじめに】 In 系金属酸化物をチャネル材料に用いた薄膜トランジスタ(TFT)において、我々 は、High-k(HK)材料として Al₂O₃をゲート絶縁膜として用いた Ga-In-Zn-O TFT のトランジス タ特性で、Al₂O₃/SiO₂ 界面のダイポール及び固定電荷によって閾値電圧(V_{th})が正方向へシフト すること及び電子移動度(μ_{FE})が 10 %程度低下することを報告した[1]。また、これまで In_{1-x}Si_xO_{1-y}C_y チャネルを用いた SiO₂ 絶縁膜 TFT のトランジスタ特性を報告した[2]。そこで、 HK 絶縁膜を用いた HK/In_{1-x}Si_xO_{1-y}C_y チャネル界面とトランジスタ特性の関係に注目した。HK 絶縁膜には、プロセス温度 300 °C でアモルファス構造を維持する k 値の異なる材料を選択し た。本研究では、原子層堆積(ALD)法で作製した 3 種類の HK(Al₂O₃, Hf_xZr_{1-x}O (HZO)及び (Ta/Nb)O_x (TNO))膜をゲート絶縁膜に用いた In_{1-x}Si_xO_{1-y}C_y TFT を作製して、HK/In_{1-x}Si_xO_{1-y}C_y チャネル界面がトランジスタ特性に及ぼす影響について議論した結果を報告する。

【実験条件】 HK/SiO₂絶縁膜を用いた TFT の断面模式図を Fig. 1 に示す。p⁺⁺-Si/SiO₂(250 nm) 膜上に、膜厚 5 nm のアモルファスな Al₂O₃, HZO 及び TNO 混合膜を成長温度 300 ℃ の ALD 法で成膜した。特に均一膜を形成するために、HZO 及び TNO 混合膜は各々(Hf/Zr)[N(C₂H₅)CH₃]₄ (Hf/Zr = 1:1)及び Ta(NtAm)(NMe₂)₃/Nb (NtAm)(NMe₂)₃(Ta/Nb = 1:1)のカクテル原料を用いた。成膜 後、300 ℃ で O₂ 中アニール処理をした。その後、In_{0.76}Si_{0.24}O_{0.99}C_{0.01} 膜を室温で 10 nm 成膜し た後に、300 ℃ で大気中アニール処理をした。Ti/Au の S/D 電極を形成後、250 ℃ で O₃ アニ ール処理をして TFT を作製した。

【結果】 Fig. 2 に、SiO₂ 単膜及び HK/SiO₂ 膜を用いた TFT の I_d - V_g 特性を示す。SiO₂ 単膜の場合に比べて、HK/SiO₂ 膜の V_{th} は正方向へシフトすること及び SS が向上することが分かった。 ただし、SiO₂ 単膜及び Al₂O₃/SiO₂ 膜の TFT の μ_{FE} はほぼ同じ値(~25 cm²/Vs)を示したが、 HZO/SiO₂ 膜及び TNO/SiO₂ 膜では約 25 %低下した。これは、HK/In_{1-x}Si_xO_{1-y}C_y チャネル界面が V_{th} 及び μ_{FE} 特性と密接な関係があることを示唆している。

 K. Kurishima *et al., J. Vac. Sci. Technol. A* 33, 061506 (2015).
栗島 他、第 76 回応用物理学会秋季学術講演会 (2015 秋) [15p-1B-13] p. 16-057.

Fig. 1 Schematic of the In_{1-x}Si_xO_{1-y}C_y TFT with HK/SiO₂.

