高温 AIN-HVPE における系内酸素が Si ドープ量に与える影響

Influence of Ambient Oxygen on Si Incorporation during High Temperature HVPE of AIN

東京農工大院工¹,株式会社トクヤマ²,東京農工大 GIR³, HexaTech, Inc.⁴,

ノースカロライナ州立大⁵, リンチョーピン大⁶

^O小西 敬太¹, 山本 玲緒^{1,2}, 富樫 理恵^{1,3}, 永島 徹², 木下 亨², Rafael Dalmau⁴,

Raoul Schlesser⁴, 村上 尚^{1,3}, Ramón Collazo⁵, Bo Monemar^{3,6}, Zlatko Sitar⁵, 熊谷 義直^{1,3}

Tokyo Univ. of Agri. & Tech.¹, Tokuyama Corporation², TUAT GIR³, HexaTech, Inc.⁴,

NC State Univ.⁵, Linköping Univ.⁶

°Keita Konishi¹, Reo Yamamoto^{1,2}, Rie Togashi^{1,3}, Toru Nagashima², Toru Kinoshita²,

Rafael Dalmau⁴, Raoul Schlesser⁴, Hisashi Murakami^{1,3}, Ramón Collazo⁵, Bo Monemar^{3,6},

Zlatko Sitar⁵, and Yoshinao Kumagai^{1,3}

E-mail: keitakonishi@go.tuat.ac.jp

我々は、高温ハイドライド気相成長(HVPE)法を用いて高純度且つ低転位密度(<10⁴ cm⁻²)の AIN 厚膜の高速成長を実現し、実用レベルのバルク AIN 基板量産を達成している[1]。今回は、導電性 AIN 基板の作製を目的として、Si ドープ AIN の HVPE 成長を検討したところ、用いた基板の違い に起因する系内酸素量の差によって、Si 取込量が大きく異なることを見出したので報告する。

三塩化アルミニウム (AlCl₃) とアンモニア (NH₃) を原料ガス、水素窒素混合ガス (F^o=H₂/(H₂+N₂)=0.7)をキャリアガスとして用いる HVPE 装置を使用し、成長温度 1450°C、AlCl₃ 供給分圧 5×10⁻⁴ atm、V/III 供給比4 で AlN 成長を行った。Si ドーピングは、液体バブラーに充填

した四塩化ケイ素(SiCl₄)を窒素ガスで輸送し実施した。ドープ量は、 AlCl₃ と SiCl₄の供給分圧比[$R_{si}=P^{o}_{siCl_4}/(P^{o}_{AlCl_3}+P^{o}_{siCl_4})$]で制御した。 基板として、c 面サファイア基板上に有機金属気相成長法により AlN 薄膜を成長したテンプレートと、物理気相輸送(PVT)成長法に より作製した Al 極性 AlN バルク基板の2種類を用いた。

それぞれの基板上で異なる Rsi で成長した AIN 膜中の Si と酸素 (O)のSIMS 不純物濃度を図1に示す。O不純物について比較すると、 テンプレート基板上では、PVT-AIN 基板上と比べて一桁程度高い濃 度であった。これは、AINの成長温度(1450°C)において、サファイ ア基板がキャリアガス中の Hっにより分解されるためと考えられる [2]。次に、Si 不純物について注目すると、テンプレート基板上の AIN 膜中において Si ドープ量は、2×10¹⁹~1×10²⁰ cm⁻³の範囲におい て Si 取込率 1.7%で制御できているが、それ以下の濃度範囲では Si 取込率が減少する。一方、PVT-AIN 基板上の AIN 膜では、 6×10¹⁸~7×10¹⁹ cm⁻³の範囲 において Si 取込率 2.0%で Si ドープ量制 御できることが分かった。テンプレート基板上で低 Rsi 時の Si 取込 率の減少は、Si と O 不純物により SiO ガスが生成されるためであ ると考えられる。また、それぞれの Si ドープ AIN 膜表面を比較す ると、テンプレート基板上では AIN 膜中の転位密度が高い(10⁹ cm⁻² 台)ため、SiN ナノマスク効果により表面に凹凸が発生するが、 PVT-AIN 基板上の AIN 膜は低転位密度であるため鏡面膜が得られ た。以上のことから、Si ドープ AIN の高温厚膜成長には、PVT-AIN 基板が適している。AIN 膜の光学測定と電子輸送特性の結果は本発 表にて行う。

本研究の一部は科研費基盤研究(B)No.15H03555の援助を受けた。 [1] Y. Kumagai *et al.*, Appl. Phys. Express, **5**, 055504 (2012).

[2] Y. Kumagai et al., J. Cryst. Growth, 350, 60 (2012).

Fig. 1 Impurity concentrations of Si and O as a function of R_{Si} in AlN growth at 1450°C by HVPE: on AlN/sapphire (0001) template (a) and on PVT-AlN (0001) substrate (b).