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1. Introduction 

MoS2 FETs with high-k dielectrics have attracted 

much attention in ultimate scaled device research be-

cause of its natural thin body without dangling bonds 

ideally. However, both defects such as sulfur vacancy in 

MoS2
[1] and dangling bonds on the high-k oxide surface 

might severely degrade the MoS2/high-k interface. In 

order to elucidate the underlying physical origin for the 

interface degradation, the C-V measurement is the pow-

erful tool because the time constant and the energy dis-

tribution of interface states (Dit) can be determined[2-4]. 
However, unless quantum capacitance (CQ) of mono-

layer MoS2 is correctly extracted experimentally, the en-

ergy distribution of Dit cannot be determined. In this 

work, interface states are systematically evaluated as a 

function of EF with the help of temperature-dependent 

CQ extraction in order to elucidate the physical origin 

for the interface degradation. 

2. Experimental 

Monolayer MoS2 FET with Ni/Au source/drain elec-

trodes are fabricated by mechanically exfoliation tech-

nique on SiO2 (90 nm)/n+-Si substrate. Then, 1-nm Y 

metal was deposited via thermal evaporation at an Ar 

atmosphere of 10-1 Pa partial pressure, followed by ox-

idization at atmosphere to form buffer layer. The 10-nm 

Al2O3 oxide layer was deposited by atomic layer depo-

sition before the Al top gate electrode formation. 

3. Results & Discussion 

As for C-V measurement of monolayer MoS2 FET, the 

frequency dispersion is much reduced due to the rela-

tively high crystallinity of bulk MoS2 and the dedicated 

formation of Y2O3 buffer layer. Fig. 1 shows CQ ex-

tracted from the C-V measurement at 1 MHz assuming 

that interface traps are unable to respond to this fre-

quency, with the theoretical model considering Fermi 

distribution and density of states (DOS) of 2D materi-

als.[5] Experimental CQ fits well with the theoretical 

curve at the wide range of VTG (-1.8 ~ 0.1 V). While, 

interface traps cause the deviation from theoretical CQ 

curve for the range of CQ < Cit. In order to quantitatively 

evaluate Dit, the capacitance-frequency curves are 

measured at different VTG. On the basis of equivalent 

circuit model, Dit, CQ and time constant (τit) are ex-

tracted simultaneously by fitting experimental C-f 

curves as shown in Fig. 2. The inset in Fig. 2 shows 

extracted CQ and τit. Having confirmed the validity of CQ 

theory, Dit is shown as a function of EF as shown in Fig. 

3 by referring to theoretical CQ-EF correlation. The 

measured EF range is extended to near the conduction 

band edge by low temperature measurements (75- 300 

K). As a result, the tail-shape of Dit is clearly confirmed, 

which is different from that for bulk MoS2.[3] This band-

tail Dit will not be directly related with sulfur vacancies, 

because energy level for S vacancy[1] is slightly lower 

than the present energy range for Dit. The Mo-S bond 

bending due to the strain at the MoS2/high-k interface or 

bond bending related with S vacancy might be the origin. 

Moreover, the important finding realized from this 

study is that ultra-thin 2D materials is more sensitive to 

the interface disorder because of reduced DOS, since the 

effect of interface traps on electrical properties is con-

trolled by the relative magnitude of CQ and Cit. 
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Fig. 2 C-f curves at different VTG. Black lines 
are fitting curves. (Inset) τit and CQ vs. VTG-VTH. 

Fig. 1 CQ-VTG curves. 
Fig. 3 Dit vs. EF. Si(100)[6] and bulk 
MoS2

[2] are included by normalized EG. 
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