Band tail interface states and quantum capacitance in monolayer MoS₂ FET

Nan Fang¹ and Kosuke Nagashio^{1,2}

¹Department of Materials Engineering, The University of Tokyo, ²PRESTO-JST

E-mail: nan@adam.t.u-tokyo.ac.jp

1. Introduction

 MoS_2 FETs with high-k dielectrics have attracted much attention in ultimate scaled device research because of its natural thin body without dangling bonds ideally. However, both defects such as sulfur vacancy in $MoS_2^{[1]}$ and dangling bonds on the high-k oxide surface might severely degrade the $MoS_2/high-k$ interface. In order to elucidate the underlying physical origin for the interface degradation, the C-V measurement is the powerful tool because the time constant and the energy distribution of interface states (D_{it}) can be determined^[2-4]. However, unless quantum capacitance (C_0) of monolayer MoS₂ is correctly extracted experimentally, the energy distribution of D_{it} cannot be determined. In this work, interface states are systematically evaluated as a function of $E_{\rm F}$ with the help of temperature-dependent $C_{\rm Q}$ extraction in order to elucidate the physical origin for the interface degradation.

2. Experimental

Monolayer MoS₂ FET with Ni/Au source/drain electrodes are fabricated by mechanically exfoliation technique on SiO₂ (90 nm)/n⁺-Si substrate. Then, 1-nm Y metal was deposited via thermal evaporation at an Ar atmosphere of 10^{-1} Pa partial pressure, followed by oxidization at atmosphere to form buffer layer. The 10-nm Al₂O₃ oxide layer was deposited by atomic layer deposition before the Al top gate electrode formation.

3. Results & Discussion

As for *C-V* measurement of monolayer MoS_2 FET, the frequency dispersion is much reduced due to the relatively high crystallinity of bulk MoS_2 and the dedicated formation of Y_2O_3 buffer layer. **Fig. 1** shows C_Q extracted from the *C-V* measurement at 1 MHz assuming

that interface traps are unable to respond to this frequency, with the theoretical model considering Fermi distribution and density of states (DOS) of 2D materials.^[5] Experimental C_Q fits well with the theoretical curve at the wide range of V_{TG} (-1.8 ~ 0.1 V). While, interface traps cause the deviation from theoretical C_0 curve for the range of $C_Q < C_{it}$. In order to quantitatively evaluate D_{it} , the capacitance-frequency curves are measured at different V_{TG} . On the basis of equivalent circuit model, D_{it} , C_Q and time constant (τ_{it}) are extracted simultaneously by fitting experimental C-fcurves as shown in Fig. 2. The inset in Fig. 2 shows extracted $C_{\rm Q}$ and $\tau_{\rm it}$. Having confirmed the validity of $C_{\rm Q}$ theory, D_{it} is shown as a function of E_F as shown in **Fig. 3** by referring to theoretical C_0 - E_F correlation. The measured $E_{\rm F}$ range is extended to near the conduction band edge by low temperature measurements (75-300 K). As a result, the tail-shape of D_{it} is clearly confirmed, which is different from that for bulk MoS₂.^[3] This bandtail D_{it} will not be directly related with sulfur vacancies, because energy level for S vacancy^[1] is slightly lower than the present energy range for D_{it} . The Mo-S bond bending due to the strain at the MoS₂/high-k interface or bond bending related with S vacancy might be the origin. Moreover, the important finding realized from this study is that ultra-thin 2D materials is more sensitive to the interface disorder because of reduced DOS, since the effect of interface traps on electrical properties is controlled by the relative magnitude of C_0 and C_{it} .

Acknowledgements This research was partly supported by the JSPS Core-to-Core Program, A. Advanced Research Networks, JSPS KAKENHI, Japan. **References** [1] H. Qiu *et al.*, Nat. Commun. 2013, **4**, 2642. [2] M. Takenaka, *et al.*, IEDM, 2016, 5.8.1. [3] W. Zhu, *et al.*, Nat. Commun. 2014, **5**, 1. [4] X. Chen *et al.*, Nat. Commun. 2015, **6**, 6088. [5] N. Ma *et al.*, 2D Materials 2015, **2**, 015003. [6] T. Sakurai *et al.*, J. Appl. Phys. 1981, **52**, 2889.]

Fig. 1 C_Q - V_{TG} curves.

Fig. 2 *C-f* curves at different V_{TG} . Black lines are fitting curves. (Inset) τ_{it} and C_Q vs. V_{TG} - V_{TH} .

^{10⁴}10⁵ Frequency(Hz)

(sec)

-0.6 -0.4 -0.2

V_{TG}-V_{TH}(V)

10

Fig. 3 D_{it} vs. E_F . Si(100)^[6] and bulk MoS₂^[2] are included by normalized E_G .