有機半導体素子の静電容量-電圧特性に現れるピークの起源に関する考察

Study on a peak in capacitance-voltage characteristics of organic semiconductor using

impedance spectroscopy 大阪府立大¹、大阪府立大 分子エレクトロニックデバイス研² ⁰福留 淳¹、高田 誠¹、永瀬 隆^{1,2}、小林 隆史^{1,2}、内藤 裕義^{1,2} Osaka Pref. Univ.¹, RIMED² ^oJ. Fukudome¹, M. Takada¹, T. Nagase^{1, 2}, T. Kobayashi^{1, 2}, H. Naito^{1, 2} E-mail: jun.fukudome.oe @pe.osakafu-u.ac.jp

<u>はじめに</u> インピーダンス分光 (IS)法により得られる静電容量-電圧 (C-V)特性は、積層構造有機 発光ダイオードにおける界面電荷の蓄積を調べるのに有効である[1]。しかし、電子あるいは正孔 のみが有機半導体層へ注入される単層構造素子においても C-V 特性にピークが観測される[2]。本 研究ではこの現象の起源について調べ、有機半導体素子の電子物性評価を行うことを目的とした。 実験および解析 正孔輸送材 (HTM)を絶縁性ポリマー (BP)に分子分散させた、ITO/HTM:BP/AI なる構造の正孔オンリー素子 (HOD)を作製し、IS 測定を行った。測定は室温大気下で、 Solartron1260 及び誘電体インターフェイス 1296 を用いて行った。解析にはデバイスシミュレータ ATLAS (SILVACO)を用いた。デバイスシミュレーションで仮定した素子構造は上述の HOD であ る。

<u>結果</u> IS 測定により得られた C/C_0-V 特性を Fig. 1 (a)に示す (C_0 は0 V における静電容量)。各周 波数において C のピークが観測された。ピークを示す電圧 V_{peak} の周波数依存性を Fig. 1 (b)に示す。 低周波になるにつれ V_{peak} が一定値になることが分かり、0.1 Hz において 1.05 V であった。 V_{peak} に対応する物理量を調べるためデバイスシミュレーションを行ったところ、デバイスシミュレー ションにおいても C-V 特性にはピークが生じることが分かった。 V_{bi} を変化させた際の C-V 特性の デバイスシミュレーション結果 (Fig. 2)から V_{peak} は内蔵電位 V_{bi} とほぼ一致することが分かった。

一方、デバイスシミュレーションにおいては V_{peak}の周波数依存性は図 1 (b)の周波数域では見られなかった。当日は様々な有機半導体による HOD の IS 測定結果も報告し、V_{peak}≈V_{bi}の妥当性を 議論する予定である。

<u>参考文献</u> [1]S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, J. Appl. Phys. **107**, 054501 (2010). [2]S.L.M. van Mensfoort and R. Coehoorn, Phys. Rev. Lett. **100**, 086802 (2008). **謝辞** 本研究の一部は、科学研究費補助金 (17H01265)の助成を受けた。

Fig. 1 (a) Experimental C/C_0 -V characteristics for ITO/ HTM:BP/Al device at 0.1-1000 Hz and at room temperature. (b) Plots of V_{peak} vs frequency at room temperature.

Fig. 2 Calculated *C-V* characteristics of HOD with different built-in potentials at 1000 Hz and at 300 K. The inset shows an energy band diagram of HOD.