高エネルギーイオン入射による Si での生成電荷分布計測 Measurement of charge distribution in Si generated by high energy ion 阪大基礎工¹、量研²、JST さきがけ³、^O谷 健一^{1,2}、阿保 智^{1,2}、若家 冨士男¹、小野田 忍²、 山下 隼人^{1,3}、宮戸 祐治¹、阿部 真之¹

Osaka Univ.¹, QST², JST PRESTO³, K. Tani^{1, 2}, S. Abo^{1, 2}, F. Wakaya¹, S. Onoda², H. Yamashita^{1, 3},

Y. Miyato¹, M. Abe¹

E-mail: kenichitani125@s.ee.es.osaka-u.ac.jp

【背景・目的】高エネルギーイオンが物質に入射すると、その軌跡に沿って物質内に電子正孔対 が生成される。半導体デバイスでは、この電荷が素子中を流れ、記憶情報や計算結果の反転(ソ フトエラー)が起こることが問題となっている。ソフトエラー対策は、素子構造と回路構造の両 面から行われてきたが、近年の素子の微細化に伴い、対策が困難な複数セルでのソフトエラーの 発生が問題となってきている。また、これまでに我々の研究グループは素子内に生成する電荷の 広がりがソフトエラー発生領域に関係していることを報告し

た[1]。さらに、この報告では従来の生成電荷分布理論[2]より 広い範囲に電荷を生成している可能性を指摘している。従来の 生成電荷分布理論は、液体での実測データに基づいて確立した 生成電荷分布を固体へ拡張したものであり、実測データは存在 しない。そこで、本研究では固体での生成電荷分布を実測し、 実験的に検証することを目的にする。

【実験方法】P-doped-Si に B を注入、アニールにより活性化し、 pn 接合ダイオードを作製した。作製したダイオードを劈開し、 断面に 15 MeV の酸素イオンを垂直に照射し、イオンビーム誘 起電荷(Ion Beam Induced Charge: IBIC)計測を行った。n 層と空 乏層の境界にイオンを照射し、逆バイアスにより空乏層幅を 変化させ、生成電荷の捕集量の変化を計測した。空乏層が大 きい時(大きな逆バイアス印加時)には、全ての生成電荷が 捕集され、小さい時には一部のみが捕集される。15 MeV の酸 素イオン入射時に全ての生成電荷が捕集されると 670 fC にな る。

【実験結果】図1には捕集電荷量のヒストグラムを示す。0.0, 1.5,3.0 Vの電圧印加により210,450,560 fCの電荷が捕集され ている。ここには掲載しなかったが、3.5 V以上の電圧印加で は560 fCから変化しなかった。電圧を大きくすることで、空 乏層が広がり、生成電荷の捕集量が増えていき、3.0 Vで飽和 していることがわかった。イオン入射により生成する電荷の 広がりの一部が0.0 Vの電圧印加で捕集され、3.0 V以上の電 圧印加で全ての生成電荷が捕集されることと、0.0、3.0 Vの電 圧印加による空乏層幅が470、1000 nmであることから、15 MeVの酸素イオンの電荷分布の広がりは500 nm以上である ことがわかる。これは、これまでの生成電荷分布理論の170 nmと比較して3倍程度広がっていることを示唆している。

[1] 迫間昌俊 他、第 74 回応用物理学会学術講演会 19a-C8-5 [2] O. Fageeha, et al., J. Appl. Phys., Vol. 75, 2317-2321, (1994)

