スペクトラル CT を用いた体内電子密度分布の高精度推定法

Electron density distribution in human body by using a spectral CT instrument **群馬大院理エ**¹、群馬大重粒子セ² [○]林瑞子¹,長尾明恵²、取越正己²、金井達明²、櫻井浩¹ Gunma Univ., [°]Tamako Hatashi¹, Akie Nagao, Masami Torikoshi, Tatsuaki Kanai, Hiroshi Sakurai E-mail: t161d078@gunma-u.ac.jp

重粒子線治療では、加速した炭素イオンを体内に照射して治療するため、治療計画において、人体内の電子密度分布を高精度で知る必要がある。現在、CT値と電子密度との変換テーブルによって電子密度は求められているが、ビームハードニングなどに起因する誤差がある。取越ら[1]は放射光施設で得られる2色の単色X線を用いたCT撮影を提案し、電子密度を1%以下の精度で求めることに成功した。Zouら[2]は実験室で得られる連続X線源とエネルギー分光できる検出器を組み合わせたスペクトラルCTを用いて、取越らの提案手法を用いて電子密度を求めている。しかし、Zouらの提案では光源のスペクトルを仮定する必要があり、誤差の原因となる。そこで、われわれは、単元素物質を用いたキャリブレーションを用いて電子密度を求める手法を提案する。Table 1 は Zouらが報告したデータを我々が提案する手法で解析しなおした結果である。Zefの誤差は大きくなるが、電子密度に関しては精度向上がみられることがわかる。

	Theory		Experiment		Z _{eff} error(%)		ρ _e error(%)	
	$Z_{\rm eff}$	ρ_e (cm ⁻³)	$Z_{\rm eff}$	ρ_e (cm ⁻³)	Present	Previous[2]	Present	Previous[2]
С	6	6.8E+23	5.2	6.86E+23	-13.3	7.0	0.9	8.7
Mg	12	5.2E+23	12.37	5.03E+23	3.1	3.6	-3.3	7.7
Al	13	7.8E+23	12.77	7.98E+23	-1.8	3.4	2.3	12.9
C_2H_5OH	6.04	2.62E+23	9.26	2.61E+23	53.3	5.0	-0.4	0.3
$(H_2O)_{50}$	6.7	3.02E+23	9.32	3.11E+23	39.1	10.0	3.0	0.7
$(C_2H_5OH)_{50}$	0.7	3.02L+23	9.32	J.11L±2J	39.1	10.0	5.0	0.7
H_2O	7.22	3.34E+23	9.46	3.31E+23	31.0	3.5	-0.9	4.2

Table 1 Effective atomic number Z_{eff} and electron density ρ_e

^[1] M. Torikoshi, T. Tsunoo, M. Sasaki, M. Endo, Y. Noda, Y. Ohno, T. Kohno, K. Hyodo, K. Uesugi and N. Yagi, Phys. Med. Biol. 48 (2003) 673-685

^[2] W Zou, T. Nakashima, Y. Onishi, A. Koike, B. Shinomiya, H. Morii, Y. Neo, H. Mimura and T. Aoki, Jpn. J. App. Phys. 47 (2008) 7317-7323