ペロブスカイト太陽電池の効率向上に向けたフラーレン誘導体の利用

Use of Fullerene Derivatives for Creation of New Perovskite Solar Cells 東大院工¹,中国科技大²,東北師範大³,アールト大⁴,産総研⁵ 〇</sup>松尾 豊^{1,2}, II Jeon¹,上野 裕 ³, Esko I. Kauppinen⁴,末永 和知⁵,丸山 茂夫^{1,5}

Univ. of Tokyo¹, USTC², NENU³, Aalto Univ.⁴, AIST⁵ ⁹Yutaka Matsuo^{1,2}, Il Jeon¹, Hiroshi Ueno³,

Esko I. Kauppinen⁴, Kazu Suenaga⁵, Shigeo Maruyama^{1,5}

E-mail: matsuo@photon.t.u-tokyo.ac.jp; matsuo@ustc.edu.cn

In this presentation, we discuss the use of C_{60} and fullerene derivatives for improvement of performance in perovskite solar cells (PVSCs). C_{60} and a fullerene derivative, PCBM are generally used as electron transport layers (ETLs) in inverted PVSCs. In our research, we used C_{60} as an ELT in normal structure PVSCs, where a perovskite layer was sandwiched by an electron-collecting C_{60} ELT and a hole-collecting single-walled carbon nanotubes (SWCNTs) electrode. The SWCNTs electrode was modified with small molecule organic semiconductors or semiconductive polymers to enhance hole-transporting ability and barrier property. These carbon-sandwiched PVSCs showed 17% PCE, when P3HT was applied to SWCNTs films. On the other hand, when we used spiro-MeOTAD instead, long-lived PVSCs were realized.

Methano-indene-fullerene (MIF, $C_{60}(CH_2)Ind$) was used as an ELT in inverted PVSCs.^[1] The planar p–i–n device with a NiO-diethanolamine/CH₃NH₃PbI₃/MIF structure showed 18.1% PCE with high open-circuit voltage (V_{OC}) of 1.13 V and fill factor (FF) of 0.80. This high performance is attributed to high-lying LUMO level and small volume of the indeno group that can provide short fullerene–fullerene contact distance for high electron mobility.

A fullerene derivatives, PCBM was interpenetrated into SWCNTs film network to create a SWCNTs cathode. This is contrast to the fact that SWCNTs are usually hole-collecting anode with p-doping. We fabricated both-carbon PVSCs with a structure of substrate/CNT:P3HT/PEDOT:PSS/CH₃NH₃PbI₃/CNT:PCBM by using both P3HT-wrapping SWCNTs and PCBM-penetrating SWCNTs films as anode and cathode, respectively. The both-carbon PVSCs are flexible and can be used entirely without vacuum process, which is advantageous cost-effective production.

Finally, we utilized lithium-ion-containing [60]fullerene, $Li^+@C_{60}$ TFSI (NTf₂; bis(trifluoromethanesulfonyl)imide) salt as a dopant to spiro-MeOTAD in PVSCs. We demonstrated 10 times higher stability than the conventional devices with commonly used LiTFSI. We ascribe this improvement to hydrophobicity of the fullerene cage and oxygen-capture ability of the neutral Li@C₆₀ that forms electron transfer from spiro-MeOTAD to [Li⁺@C₆₀]TFSI⁻ in the doping process.

References

 Q. Xue, Y. Bai, M. Liu, R. Xia, Z. Hu, Z. Chen, X.-F. Jiang, F. Huang, S. Yang, Y. Matsuo, H.-L. Yip, Y. Cao, *Adv. Energy Mater.* 2017, 1602333.