Influence of anti-solvents on CH₃NH₃PbI₃ films morphology: Efficient and stable inverted planar perovskite solar cells

Md Emrul Kayesh¹, Towhid Hossain Chowdhury², Ashraful Islam², Kiyoto Matsuishi¹

¹Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

²Photovoltaic Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Japan

E-mail: kayesh@bunko2.bk.tsukuba.ac.jp

Perovskite solar cells (PSCs) have intrigued a vast interest due to their low cost and easy fabrication processes. Among the different PSC structures, the inverted planar structure (*p*-i-*n*) has been identified as a promising candidate for commercialization due to their stable electrical behavior. *p*-i-*n* PSCs are constructed with a hole transport material, perovskite compound as the absorber (e.g-CH₃NH₃PbI₃) and an electron transport material. For efficient hole and electron transportation to the corresponding charge carrier layers, the morphology of the CH₃NH₃PbI₃ layer has remained detrimental. For crystallization of the CH₃NH₃PbI₃ various anti-solvents such as toluene, chlorobenzene (CB), xylene, ether etc.[1] have been extensively used for the fabrication of high efficient PSCs. However, the role of these anti-solvents concerning the stability of *p*-i-*n* PSCs has not been evaluated till now. In this study, we present the stability dependence of four anti-solvents in high efficiency *p*-i-*n* PSCs (Figure 1). Our analysis onto the post fabrication of *p*-i-*n* PSCs highlight that, anti-solvent treatment by toluene and chlorobenzene results in most stable device performance measured under 1 sun for 30 days. Successful formation of large grains with grain boundaries only along the vertical direction of CH₃NH₃PbI₃ by Phenyl-C61-butyric acid methyl ester (PC₆₁BM) [2].

Figure 1 (a) Scanning electron micrographs of CH₃NH₃PbI₃ cross sections dripped with four types of antisolvents; (b) stability comparison of power conversion efficiencies of inverted planar PSCs.

References

[1] Paek, S., et al.; Chemistry of Materials 29 (2017) 3490-3498.

[2] Shao, Y., et al.; Nature communications 5 (2014) 5784.