マイクロ波励起大気圧プラズマを用いた ZnO 薄膜堆積法の検討

Investigation of ZnO Thin Film Deposition Method

by Microwave Excited Atmospheric Pressure Plasma

金沢大 〇大野 常久, 山田 涼輔, 當摩 哲也, 石島 達夫, 田中 康規, 上杉 喜彦

Kanazawa Univ. °Tsunehisa Ono, Ryosuke Yamada, Tetsuya Taima,

Tatsuo Ishijima, Yasunori Tanaka, Yoshihiko Uesugi

E-mail: fallere@stu.kanazawa-u.ac.jp, ishijima@ec.t.kanazawa-u.ac.jp

1. 研究背景

モノと情報が密接につながる IoT(Internet of Things)を活用する高度情報化社会に向けて、小 型・軽量の情報端末に搭載する太陽電池、センサ -, ディスプレイ等の電子デバイスの需要は年々 拡大している。電子デバイスの製造には有機膜や 無機膜の製膜工程があり,低コストかつ低温で製 膜可能な手法が求められている。代表的なスパッ タ法は, 製膜時には真空環境が必要であるため装 置コストが高額である。Sol-gel 法では製造コス トは低いが製膜するために長時間の熱処理が課 題である。我々はこれらの問題を解決するため, マイクロ波励起大気圧プラズマジェット (MWAPPJ: Microwave-excited Atmospheric Pressure Plasma Jet)を用い、簡便な製膜手法の開発を進め ている。 MWAPPJ は大気圧低温環境下で化学反 応性の高い活性種を生成できる。MWAPPJ により生成した活性種と固体ターゲット材料とを作 用させることにより,薄膜堆積を行う手法を検討 したので報告する。

2. 実験装置及び実験内容

図1に実験装置の概略図を示す。2.45 GHzの マイクロ波を、矩形導波管を用いて伝搬させた。 アイソレータ, EH チューナー, 同軸導波管変換 器を介してリアクタにマイクロ波を印加した。マ イクロ波を矩形波によりパルス変調した。パルス 周波数 10 kHz, Duty Factor を 50% とした。リア クタは、ガス導入ポート、共振部、プラズマ生成 部(外径 3.6 mm, 内径 2.1 mm の石英管)から構成 される。ガス導入ポートより動作ガス(He:3 slm) を導入した。リアクタの中心軸上の下端に配置し た石英管ノズルにマイクロ波電界を集中させ MWAPPJ を生成した。石英管下方 15 mm に金属 メッシュを配置した。金属メッシュには MWAPPJ 照射前に亜鉛アセチルアセトナート錯体を Sol-gel 前駆体として塗布後に乾燥させ、ターゲ ット材とした。金属メッシュ下 1.5 mm に Si 基板 を設置した。 MWAPPJ を照射することで基板上 に ZnO を堆積させた。 MWAPPJ 照射時間は 60 sec とした。挿入する金属メッシュ枚数の変更に より供給する前駆体量を変化させ,堆積膜への影 響を検討した。MWAPPJ 照射後の堆積膜は電子 線走査型顕微鏡(SEM)により様相観察及び X 線 光電子分光法 (XPS), X 線回折法(XRD)により, 成分評価を行った。

3. 実験結果及び考察

Si 基板上に堆積された堆積物の様相を図 2(a)(b)に示す。それぞれ挿入した金属メッシュの

枚数は3枚、5枚である。積層枚数を増加させる ことで, 白色に堆積する領域が減少した。 堆積物 の SEM 画像を図 3(a)(b)に示す。SEM 画像から, 数百ナノサイズの粒子の堆積を確認した。5枚の 場合, 基板表面における粒子状堆積物の面密度が 減少し,長さ数µm 程度の棒状の堆積物を確認し た。講演では、各サンプルの XPS 分析結果や XRD 分析結果についても報告する予定である。

図1 実験装置図 Fig. 1 Experimental Setup

- (b) 図2 基板上の堆積物の様相 (金属メッシュの枚数: (a)3枚, (b)5枚)
- Fig. 2. Substrate images of the deposited material structure (The number of metal meshes:(a)3 sheets.(b)5 sheets)

(a)

- (b) (a) 図3 基板上における堆積物の SEM 画像 ((a)3枚, (b)5枚)
- Fig. 3. SEM images of the deposited ZnO materials ((a) 3 sheets, (b) 5 sheets)