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1. Introduction 
    Knots are familiar entities that appear at a captivating 
nexus of art, technology, mathematics, and science.  They 
have recently attracted significant experimental interest, in 
contexts ranging from knotted DNA [1] and nanostructures 
[2] to nontrivial vortex knots in classical fluids [3]. Within 
classical field theories [4], knots have been proposed as the 
basis of fundamental particles, as well as explaining diverse 
persistent phenomena such as atoms and molecules [5]. 
    We describe here the first controlled experimental 
creation and detection of knot solitons [6], which are parti-
cle-like topological excitations possessing a knotted field 
character [7-9]. The superfluid medium is a Bose-Einstein 
condensate at a temperature some tens of billionths of a 
degree above absolute zero. In addition to enabling future 
experimental studies of their properties and dynamics, these 
knot solitons provide a striking demonstration of the cele-
brated Hopf fibration [10], which mathematically ties to-
gether many seemingly unrelated physical phenomena. 
 
2. The Knot Soliton 
   A knot soliton is a topological structure that exists in a 
uniform background field consisting of vectors that all 
point in the same direction. The soliton itself consists of a 
continuous, three-dimensional orientation of these vectors 
in such a fashion that all of the vectors cannot be restored 
to the uniform configuration by simple rotations alone. 
Every vector orientation is represented within the soliton, 
with common orientations lying on closed curves in real 
space, and each of these curves is linked with every other 
exactly once. One may express this as a nontrivial mapping 
from real space to the space of unit vectors, R3~S3→S2, 
discovered mathematically by Hopf in 1931 [10]. Our ex-
periment realizes this mapping by creating the appropriate 
vector field d(r) [9]. 
 
3. The Quantum Fluid 

We work with a Bose-Einstein condensate of Rubidi-
um-87 atoms. This superfluid is a highly controlled, coher-
ent environment within which to create topological excita-
tions, including quantized vortices [11] and monopoles [12]. 
The spin-1 condensate is described in terms of a macro-
scopic wavefunction Ψ, which consists of a scalar part ex-
pressing atomic density and phase that multiplies a 
three-component normalized spinor. Within the “polar” 
magnetic phase, the spinor may also be expressed in terms 
of a unit vector d(r) within which the knot structure is in-
scribed. Initially, d(r) points along the z axis everywhere. 

 
3. Tying the Knot 
   The experiment begins when we suddenly apply a non-
uniform magnetic field, causing the vectors d(r) to undergo 
Larmor precession. The appropriate orientation of d(r) 
emerges after approximately 500µs. 
    
4. Detecting the Knot 
   The knot is detected after releasing the superfluid from 
its confinement and photographing the atomic density in 
each of its three spin components. The resulting patterns 
clearly reveal the expected linked rings, and are in excellent 
agreement with numerical simulations. 
 
5. Conclusions 
   We have created and detected a knot soliton, the first in 
a quantum-mechanical medium. 
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