Er³⁺, Ni²⁺共添加ガーネットの広帯域応答アップコンバージョン発光

Broaband-sensitive upconversion of Er³⁺, Ni²⁺-co-doped garnets

豊田中研 〇竹田 康彦, ルイテル ホム ナト, 水野 真太郎

Toyota Central R&D Labs., Inc. [°]Yasuhiko Takeda, Hom Nath Luitel, Shintaro Mizuno

E-mail: takeda@mosk.tytlabs.co.jp

アップコンバージョン(UC)は太陽電池、蛍光集光器、太陽光励起レーザーなど既存の太陽エネルギー変 換デバイスにより利用される波長帯域を拡張することができる。Er³⁺添加アップコンバーターは、波長 1.55 µm 帯の光を結晶シリコンの吸収端(1.1 µm)よりも僅かに短波長である 0.98 µm に変換するので、結晶シリコン太 陽電池と組み合わせて用いられる。しかし、Er³⁺の吸収バンドが狭いので、太陽光スペクトルのうちのごく一部し か利用することができない。我々はこれの感度帯域を拡張するために、即ち 1.1–1.45 µm 光を利用するために、 Ni²⁺増感材を導入した。これが Er³⁺に対する増感材として機能するための材料設計指針を明確化し[1]、それ に基いて、ABO₃タイプのペロブスカイト構造をもつ La(Ga_{0.5}Sc_{0.5})O₃、CaTiO₃などに Er³⁺と Ni²⁺を共添加した材 料を提案し、広帯域応答 UC 発光を実現した[2–4]。ここで Ni²⁺は 8 面体中心である B サイトを占め、1.1–1.45 µm 光を吸収し、そのエネルギーが A サイトにある Er³⁺に移動して UC 発光につながる。我々は、これらの粉末 試料を合成し、高効率のエネルギー移動と、それに伴う UC 発光を実証した。

高効率 UC のための次の方策の1つが、フォトニック結晶構造を形成して UC 発光波長の光状態密度を増 大することであり、そのためにはマクロサイズの透明試料が必要である。これを形成する有望な方法に、透明セ ラミックス技術がある。ただし、透明化のためには斜方晶である La(Ga_{0.5}Sc_{0.5})O₃, CaTiO₃ は不適であり、ガーネ ットなどの立方晶構造の母材が必要である。ガーネット中には、Ni²⁺が占有可能な 2 種類のサイトがあり、それ ぞれ 8 面体、4 面体中心である。もし Ni²⁺が 4 面体中心サイトを占めると、これは Er³⁺の第 1 励起準位 (⁴F_{13/2}) よりも低いエネルギー準位をもつため、消光中心として機能するので、これを避けなければならない。これまで に、Y₃Al₅O₁₂, Gd₃Sc₂Ga₃O₁₂に添加された Ni²⁺のうちの約半数が 4 面体中心を占めるのに対し、Gd₃Ga₅O₁₂の 場合は添加 Ni²⁺の大部分が 8 面体中心を占めることが知られている。そこで、Gd₃Ga₅O₁₂を母材に用いて、先 ず粉末試料を有機金属分解法により作製した。Ni²⁺が Ga³⁺を置換することにより生じる電荷の不釣り合いを補 償するために Nb⁵⁺を共添加した。

図1に10%Er, 0.2%Ni 共添加試料の拡散反射スペクトルを示す。2 つの Er³⁺の吸収バンドの間に、8 面体 Ni²⁺に起因する幅広い吸収が見 られる。一方、波長 1.1 μ m の4 面体 Ni²⁺の吸収は僅かである。この試 料の Er³⁺を直接励起した場合に加えて、波長 1.18 μ m 光により Ni²⁺を 励起した場合にも、図2に示されるように UC 発光が現れる。図1の内 部量子効率(IQE)スペクトルは 1.1–1.7 μ m の幅広い範囲にわたる。 Ni²⁺吸収帯中の IQE と Er³⁺吸収帯中の IQE が近い値であることは、Ni² から Er³⁺へのエネルギー移動効率が1に近いことを示唆する。実際、時 間分解分光により求められたエネルギー移動効率は0.98にも達した[5]。 Er³⁺添加濃度が増大すると、10%までの範囲では、Ni²⁺励起 UC 発光強 度が増大した。吸収強度は一定であるので、この結果は自明ではなく、 cooperative upconversion が主な機構であることを示唆する[6]。

本研究の一部は、JST 戦略的創造研究推進事業-先端的低炭素 化技術開発(ALCA)の助成を受けた。

[1] Y. Takeda, et al., Appl. Phys. Lett., 108, 043901 (2016).
[2] H. N. Luitel, et al., RSC Adv. 6, 55499 (2016).
[3] H. N. Luitel, et al., Opt. Mater. 64, 314 (2017).
[4] H. N. Luitel, et al., phys. stat. solidi (a), 201600899.
[5] Y. Takeda, et al., J. Appl. Phys. 120, 073102 (2016).
[6] Y. Takeda, et al., Appl. Phys. Express 9, 112402 (2016).

Fig. 1 Diffuse effectance and IQE spectra of the Er^{3+} , Ni^{2+} -co-doped $Gd_3Ga_5O_{12}$. Inset: diffuse reflectance spectrum of the Ni^{2+} -doped control sample (no Er^{3+}).

Fig. 2 UC emsion spectrum under 1.18 μ m excitation. Inset: dependence on the Er³⁺ concentration.