YAG/AI₂0₃復合セラミックス発光材料の合成と発光特性

Preparation and Luminescent Properties of YAG/Al₂O₃ Composites Phosphors

Ceramics

物材機構¹, 厦門大学² 解栄軍¹, 李淑星², Yujin Cho¹, 武田隆史¹, 広崎尚登¹

NIMS¹, Xiamen Univ.², ^oROng-Jun Xie¹, Shuxing Li², Yujin Cho¹, Takashi Takeda¹, Naoto Hirosaki¹ E-mail: Xie.Rong-Jun@nims.go.jp

Laser-driven solid state lighting is a newly emerged technology that enables to produce high-power and super-brightness white light by combining a blue laser diode (LD) with a yellow luminescent material. The color converter, as one of the key components in laser lighting, must be thermally robust and luminescence efficient as it experiences high flux-density irradiation and thermal attack caused by the high power incident laser. In this work, we design a Al₂O₃-YAG:Ce phosphor ceramic with an unique composite structure, where yellow-emitting YAG:Ce particles are embedded in a thermally conductive Al₂O₃ matrix (Fig. 1). The composite phosphor ceramics exhibit a high external quantum efficiency of 76% (upon 460 nm excitation), a superior in-line transmittance of 55% at 800 nm, and a high thermal conductivity of 18.5 Wm⁻¹K⁻¹. When irradiated under a 444 nm blue laser, the phosphor ceramic with a thickness of 0.1 mm shows a linear relationship between the luminous flux and the input current under a high power density of 50 Wmm⁻², validating its suitability for high-brightness solid state laser lighting.

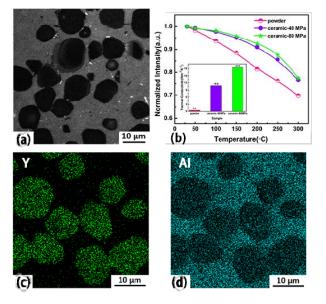


Figure 1 (a) SEM image of the YAG/Al₂O₃ composite phosphor ceramics, with large YAG phosphor particles (black) embedded in the Al₂O₃ matrx (grey), (b) thermal quenching and thermal conductivity of YAG/Al₂O₃ ceramics, (c) distribution of Y element and (d) distribution of Al element.