異なる酸素源を用いた酸化ガリウムハライド気相成長の比較

Comparison of β-Ga₂O₃ Homoepitaxial Growth by Halide Vapor Phase Epitaxy Using Different Oxygen Sources

東京農工大院工¹,株式会社タムラ²,東京農工大 GIR³,情通機構⁴,リンチョーピン大⁵ ⁰小西 敬太¹,後藤 健^{2,1}, 富樫 理恵^{1,3},村上 尚^{1,3},東脇 正高⁴,

倉又 朗人², 山腰 茂伸², Bo Monemar^{3,5}, 熊谷 義直^{1,3}

Tokyo Univ. of Agri. & Tech.¹, Tamura Corporation², TUAT GIR³, NICT⁴, Linköping Univ.⁵

°Keita Konishi¹, Ken Goto^{2,1}, Rie Togashi^{1,3}, Hisashi Murakami^{1,3}, Masataka Higashiwaki⁴,

Akito Kuramata², Shigenobu Yamakoshi², Bo Monemar^{3,5}, and Yoshinao Kumagai^{1,3}

E-mail: keitakonishi@go.tuat.ac.jp

ハライド気相成長(HVPE)法は、高純度な酸化ガリウム(Ga₂O₃)厚膜を高速成長することができる 方法として期待されている[1,2]。しかしながら、HVPE で用いる酸素源の違いが Ga₂O₃の成長へ 与える影響については報告されていない。本研究は、Ga₂O₃成長時の酸素源として O₂ と H₂O を用 いた場合の熱力学解析と成長膜の比較・評価を行った。

n型Snドープβ-Ga₂O₃ (001)基板上へ大気圧 HVPE 装置を用いてGa₂O₃成長を行った。Ga 源に は一塩化ガリウム(GaCl)、酸素源にはO₂またはH₂Oを使用した。キャリアガスには窒素を用いた。 GaCl は、850°C に保持したGa 金属とCl₂ガスとの反応により生成した。GaCl の供給分圧は 1×10⁻³ atm とし、成長時の VI/III 原子供給比は 10 に固定した。

図1は、各酸素源で成長した Ga₂O₃の成長速度の成長温度依存性を示している。両酸素源を用いた場合において、成長温度によらず成長速度はほぼ一定で、O₂を使用した時の成長速度が約8.5 µm/h となり、H₂Oを用いた場合の約2倍の成長速度であった。破線は、熱力学解析で求めた各酸素源を用いた時の Ga₂O₃ 成長の駆動力($\Delta P_{Ga_2O_3}$)を、成長速度= $K_g \cdot \Delta P_{Ga_2O_3}$ (K_g : 物質輸送係数)でフィッティングした結果であり、実験結果が熱力学に従っていることが分かる。図2は、成長温度を 1000°C とし、各酸素源を用いて成長した Ga₂O₃ 厚膜中の SIMS 不純物濃度の結果である。右側の矢印は、各元素のバックグラウンド/検出限界を示している。これより、酸素源として O₂を用いた場合、Si 不純物濃度は検出限界以下であったが、酸素源として H₂O を用いた場合、Si 不純物 濃度が約 2×10¹⁶ cm⁻³ と高い値となることが分かる。Ga₂O₃ 膜中に Si 不純物が取り込まれる原因としては、H₂O を酸素源に用いた場合には完全非水素系とは成らず、石英ガラス製の反応炉壁が水素で還元され、Si が放出されるためであると考えられる。熱力学解析、結晶構造および電気的特性の詳細は当日報告する。

本研究の一部は、総合科学技術・イノベーション会議の SIP(戦略的イノベーション創造プロ グラム)「次世代パワーエレクトロニクス」(管理法人:NEDO)、科研費新学術領域研究 No.16H06417、 および科研費基盤研究(C)No.16K04944 によって実施されました。

[1] K. Nomura et al., J. Cryst. Growth, 405, 19 (2014).

Fig. 1 Experimental and thermodynamically estimated growth rates of Ga_2O_3 at various temperatures using O_2 and H_2O as oxygen sources.

Fig. 2 SIMS depth profiles of Ga_2O_3 homoepitaxial layers grown at 1000°C using (a) O_2 and (b) H_2O . Arrows indicate background concentrations or detection limits of each impurity in the SIMS system.