ミスト CVD 法による塩化物原料を用いた GaN テンプレート上への ε-Ga₂O₃ 薄膜成長

ε-Ga₂O₃ epitaxial growth on GaN templates using

gallium chloride precursor by mist chemical vapor deposition

京工繊大¹,⁰(M1)森本 尚太¹, (D)田原 大祐¹, (M1)宮内 信宇¹, 西中 浩之¹, 吉本 昌広¹

Kyoto Inst. of Tech.¹, ^oShota Morimoto¹, Daisuke Tahara¹, Nobutaka Miyauchi¹,

Hiroyuki Nishinaka¹, and Masahiro Yoshimoto¹

E-mail: m7621045@edu.kit.ac.jp

酸化ガリウム(Ga₂O₃, E_g = 約 5.0 eV)は超ワイドバンドギャッ プ半導体として知られており、5 つの結晶構造(α , β , γ , δ , ϵ)をも つ結晶多形である[1]。中でも準安定相の一つとして知られる ϵ 相は六方晶構造を有しており、その空間群は従来のワイドバン ドギャップ半導体である AIN や GaN と同じ P6₃mc である[2]。 近年では ϵ -Ga₂O₃ が強誘電体特性や自発分極を示すことが報告 されている[3] [4]。

本発表では、ミスト CVD 法において Ga₂O₃ 成長の原料として 従来から用いられてきた Ga(Acac)₃ と新たに GaCl₃ を原料として 用いて、GaN テンプレート上に ε-Ga₂O₃ 薄膜成長を行ったことに ついて報告する。

Ga(Acac)₃および GaCl₃ 原料を用いて GaN テンプレート上に成 長させた ϵ -Ga₂O₃ 薄膜の XRD 2 θ - ω 測定結果を Fig. 1 に示す。 GaN (0002)、 ϵ -Ga₂O₃ (0004)および sapphire (0006)の回折ピーク が観察された。また Fig. 2 に示すように GaCl₃ 原料を用いるこ とで、GaN 上に成長させた ϵ -Ga₂O₃ 薄膜の XRC FWHM 値が 0.17°まで小さくなった。このように塩化物原料を用いること で、 ϵ -Ga₂O₃の結晶性を向上させることに成功した。

次に、GaCl₃原料を用いて GaN 上に成長させた ϵ -Ga₂O₃薄膜の 温度依存性について検討を行った。XRD 20- ω 測定結果を Fig. 3 に示す。基板由来の回折ピークに加え、成長温度 650-800°Cに おいては、 ϵ -Ga₂O₃(0004)の回折ピークが観察された。一方で成 長温度 850°C以上では、Ga₂O₃の最安定相である β -Ga₂O₃($\overline{4}$ 02) の回折ピークが観察された。このように、高温の成長温度では最 安定である β 相が成長することがわかった。

[1] R. Roy et al., J. Am. Chem. Soc. 74, (1952) 719.

- [2] H. Y. Playford *et al.*, Chem.-A Eur. J. **19**, (2013) 2803.
- [3] F. Mezzadri et al., Inorg. Chem. 55, (2016) 12079.

[4] M. B. Maccioni et al., Appl. Phys. Express 9, (2016) 041102.

Fig. 2. XRC images of ε -Ga₂O₃ thin films grown on GaN templates using two precursors by mist CVD.

Fig. 3. XRD images of Ga_2O_3 thin films grown on GaN templates using $GaCl_3$ precursor by mist CVD at various growth temperatures of 650-900°C.