Q値100万を超えるシリコンナノ共振器へのナノ材料付加 ー前処理プロセスの影響評価ー Coupling of nanomaterials to high-Q silicon nanocavities - Influence of preprocess for surface improvement -〇伊藤隆浩¹、芦田紘平¹、木下圭²、守谷頼²、町田友樹^{2,3}、岡野誠⁴、山田浩治⁴、高橋和¹ (1.大阪府大院工, 2.東大生産研, 3.CREST-JST 4.産総研) T. Ito¹, K. Ashida¹, K.kinoshita², R. Moriya², T. Machida^{2,3}, M. Okano⁴, K. Yamada⁴, Y. Takahashi¹, (1.Osaka Prefecture Univ., 2.IIS, Univ. Tokyo, 3.CREST-JST, 4.AIST)

E-mail: t-ito-9G@pe.osakafu-u.ac.jp

1. 概要 フォトニック結晶高 Q 値ナノ共振器は、革新的デバイス創生が期待され、多数の物質において研究されてきた。近年、注目を集めているのが、CNT[1]、WSe₂[2]、グラフェン[3]など,ナノ材料を付加して新機能を創出する試みである。いずれの研究においても Q 値 1 万弱のナノ共振器が用いられている。我々は、Q 値 100 万以上を有するシリコンナノ共振器の大量作製に成功しており[4]、この研究分野での新たな展開を目指している。ナノ材料をナノ共振器に付加する際、シリコン表面を最適化するために、前処理プロセスを加えるのが一般的である。なかでも、表面酸化と自己組織化単分子膜(SAM)は代表的な前処理である。今後、Q 値 100 万を超えるナノ共振器とナノ材料との融合を進めていくには、これらの前処理がQ 値へ与える影響を調べることが重要である。

2.実験と結果 図1に、実験に用いたマルチへテロナノ共振器構造を示す[5]。最初に、シリコン基板 表面の自然酸化膜を DHF 処理で除去し、共振波長と Q 値を測定した。つづいて、 100° 、 O_2 アニール処理を1時間加え、再度測定した。その後、 200° 、 O_2 アニール処理を1時間加して測定した。がに、ポリ-L-リシン溶液でナノ共振器表面に SAM を形成して測定した。表1にこれらの実験前 後での Q 値と共振波長の変化をまとめる。 Q_{exp} 値は、代表的な実験結果を、 Q_{loss} と波長シフトについ ては複数のサンプルを測定した平均値を示している。 Q_{loss} は、 $1/Q_{loss}=1/Q_{exp}(after)-1/Q_{exp}(befor)$ で計算される。 200° アニール処理と SAM 処理では、明確な Q 値の低下が確認されたが、 Q_{loss} にし て 300 万程度である。図 2(a)、(b)は、SAM 処理を行ったサンプルと行っていないサンプルを、金ナノ粒子溶液に浸けた後の顕微鏡写真であり、(c)は金ナノ粒子を付加したフォトニック結晶表面の SEM 画像である。SAM 処理を行わない場合、金ナノ粒子はほとんど付着しなかった。以上より、前 処理が重要であることが分かる。他のナノ材料を付加した結果など、詳細は当日報告する。

【謝辞】本研究は、科研費、東レ科学振興会の支援を受けた。

【参考文献】[1] R. Miura, et al., Nature Commu. 5, 5580 (2014). [2] A. Shakoor, et al., Laser Photon, Rev., 7, 114 (2013). [3] Gan, X., et al., Nano Letters 12, 5626 (2012) [4] 芦田 他, 2016 春季応物 22p-S621-3. [5] B. S. Song, et al., Nature Mater. 4, 207 (2005). 410 nm 418 nm 410 nm

Fig. 1. Schematic of heterostructure nanocavity.

Table 1. Summa	ry of Exper	rimental results.
----------------	-------------	-------------------

	<i>J</i>	or Enperimental results.			
	$oldsymbol{Q}_{exp}(befor)$	$\boldsymbol{Q}_{\text{exp}}(\text{after})$	Q loss	Wavelength	
	[million]	[million]	[million]	shift [nm]	
100°C O ₂	2 35	2.04	6 79	-0 198	
anneal (1H)	2.55	2.04	0.79	-0.198	
200° C O ₂	2.04	1 25	3.64	0 501	
anneal (1H)	2.04	1.25	5.04	-0.501	
Poly-L-lysine	1.26	1.14	3.04	0.578	
solution	1.30				

Fig. 2. Microscope image for silicon photonic crystal soaked in Au particle solution. (a) using poly-L-lysine solution. (b) not using. (c) SEM image of Si photonic crystal with a Au particle.