A versatile nanowire-based nanophotonic platform for the UV/VIS range

NTT Nanophotonics Center¹, NTT Basic Research Labs², NTT Device Technology Labs³, University

of Wisconsin-Madison⁴

^oS. Sergent^{1,2}, M. Takiguchi^{1,2}, T. Tsuchizawa^{1,3}, Y. Fu⁴, A. Yokoo^{1,2}, H. Taniyama^{1,2}, E. Kuramochi^{1,2},

S. Jin⁴, and M. Notomi^{1,2}

E-mail: sylvain.sergent@lab.ntt.co.jp

Subwavelength nanowires (NWs) positioned in grooved Si photonic crystal (PhC) waveguides have recently been shown to be a promising platform to achieve high quality factor nanocavities and nanolasers operating at telecommunication wavelengths [1,2]. Its main limitation stems from the absorption cut-off of silicon that prevents NWs emitting at wavelengths shorter than 1 µm to be used. This limitation can be circumvented by using silicon nitride instead of silicon, providing that the system is properly designed [3]. We here demonstrate that the design is versatile enough to be successfully implemented in the UV and visible ranges with various materials such as ZnO NWs [4] and CsPbBr₃ perovskite NWs (Fig. 1a). In such cavities, we achieve resolution-limited quality factors larger than $Q_{exp} = 2.1 \times 10^3$ for a mode volume $V_m = 3.4 (\lambda/n_r^{SiN})^3$, as deduced from three-dimensional finite-difference time-domain calculations. We also demonstrate that the degree of freedom along the groove can be used to move NW-induced nanocavities in space, to position them deterministically in PhCs of different lattice constants (Fig. 1b) and in turn to tune their optical properties (Fig. 1c): not only can we shift the resonant wavelength of the NW-induced nanocavity but we can adjust absorption losses and control the cavity to NW coupling. The versatility of our multimaterial NW-based nanophotonic platform opens the path toward the realization of novel devices including movable and tunable NW nanolasers operating across the UV/VIS range. This work was supported by JSPS KAKENHI Grant Number 15H05735.

Figure 1. (a) Microphotoluminescence (μ PL) spectra and polarization properties of the fundamental resonance for ZnO and CsPbBr₃ NW nanocavities. (b) Schematics of a NW-induced nanocavity system and its manipulation. (c) μ PL spectra of the fundamental cavity mode as a single ZnO NW is manipulated across PhCs of lattice constants 169, 166 and 163 nm.

- [2] M. Takiguchi et al., APL Photonics 2, 046106 (2017).
- [3] Sergent et al., Opt. Express 13, 279 (2016).
- [4] Sergent et al., ACS Photonics 4, 1040 (2017).

^[1] M. D. Birowosuto et al., Nature Materials 13, 279 (2014).