GFAG シンチレータの TOF-PET 時間分解能の評価

Timing Resolution of GFAG Scintillators for TOF-PET 奈良先端科学技術大物質 ¹, (株) 島津製作所 ², 東北大 NICHe³, C&A⁴ O(M2) 石井 裕樹 ¹, 津田 倫明 ², 鎌田 圭 ^{3,4}, 北村 圭司 ^{1,2}

Nara Institute of Science and Technology ¹, Shimadzu Corporation ², NICHe, Tohoku Univ. ³, C&A ⁴

^oYuki Ishii ¹, Tomoaki Tsuda ², Kei Kamada ^{3,4}, Keishi Kitamura ^{1,2}

E-mail: ishii.yuki.io0@ms.naist.jp

【緒言】

PET(Positron Emission Tomography)の TOF (Time Of Fright)機能向上には検出器の時間分解能向上が不可欠である。本研究では高い発光量が報告されている GAGG (Gd₃Al₂Ga₃O₁₂)の時間性能の改善を目的に作製された新しいシンチレータである Gadolinium Fine Aluminum Gallate (以下 GFAG-normal)とその蛍光寿命をさらに短くした GFAG-fast に着目した。これら発光特性を Table 1 に示す ¹⁾。今回はこれらのシンチレータに反射材として ESR フィルムとテフロンテープ(PTFE)を用い、TOF-PET 用検出器としての GFAG の実用性や反射材が時間分解能に与える影響を調査した。

Table 1 Scintillation properties of GFAG-normal and GFAG-fast

	GFAG-nromal	GFAG-fast
Light yield [photons / MeV]	40,000-50,000	30,000
Peak emission wavelength [nm]	520	520
Decay time [ns]	40-50	30-35

【実験】

ESR フィルムとテフロンテープでそれぞれ 被覆した GFAG -normal および GFAG-fast (3 x 3 x 15 [mm³], Fig.1)と SiPM (Silicon Photo -multiplier)を組み合わせた検出器により ²²Na 線源から生じる対消滅ガンマ線を同時計数で 捉え、時間分解能を評価した。この際、SiPM に加える over voltage は 7.0 [V]とした。また同

様の条件でシングル収集によりエネルギーヒストグラムを測定し、オシロスコープによりSiPMからの出力波形を測定した。

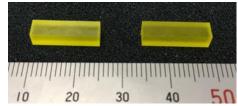


Fig.1. Photo of GFAG-normal crystal (left) and GFAG-fast crystal (right)

【結果と考察】

時間分解能は反射材に ESR フィルムを用いた場合、GFAG-normal、GFAG-fast でそれぞれ231 [ps]、216 [ps]となった。エネルギーヒストグラムの光電吸収ピーク(511 [keV])のチャンネル位置から求めた GFAG-fast の総発光量はGFAG-normal に比べ30%程小さくなった。SiPM による出力波形から GFAG-fast は蛍光寿命が GFAG-normal に比べ30%程短いが、ピークとなる発光強度は GFAG-normal と同等に保っており、こうした発光特性が時間分解能向上に寄与したと考えられる。反射材にテフロンテープを用いた場合、ESR フィルムに比べ最大で20 [ps]の時間分解能の低下が確認された。

 Yong-Seok Lee et al, Nuclear Instruments and Methods in Physics Research Section A vol.832, pp.63-67 (2016)