Carrier transport properties of boron-doped p-BaSi₂ on Si(111) and Si(001) Univ. Tsukuba¹, ^oT. Deng¹, M. Emha Bayu¹, Z. Xu¹, R. Takabe¹, K. Toko¹, T. Suemasu¹ E-mail: bk201630101@s.bk.tsukuba.ac.jp

Introduction

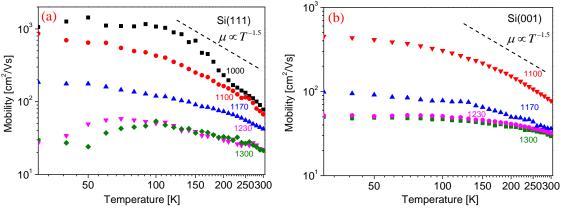
Barium disilicide (BaSi₂) has attractive features for solar cell application such as a suitable band gap, a large minority-carrier lifetime ($\tau \sim 10 \ \mu$ s) and a large minority-carrier diffusion length ($L \sim 10 \ \mu$ m). In our previous work, we successfully grew boron (B)-doped p-BaSi₂ on a flat n-Si(111) substrate to form pn junction solar cells and achieved an efficiency of 9.9%. However, the carrier transport properties of B-doped p-BaSi₂ have not been investigated. In this study, we attempted to explore the carrier transport properties of B-doped p-BaSi₂ on Si(111) and Si(001). They are both *a*-axis-oriented multi-domain epitaxial layers; there are three and two epitaxial variants rotating by 120 and 90 deg with each other around the surface normal, respectively [1]. Furthermore, the potential profiles across the grain boundaries in undoped n-BaSi₂ differ between them [2]. Hence, the scattering mechanisms in those films are of great importance when we apply these materials to solar cells.

Experiment

We used FZ-n-Si(111) and FZ-n-Si(001) substrates with high-resistivity of more than 1000 Ω ·cm. B-doped p-BaSi₂ epitaxial films exceeding 400 nm in thickness were grown by molecular beam epitaxy (MBE) using reactive deposition epitaxy templates. The temperatures of B K cell (T_B) were set at 1000, 1100, 1170, 1230 and 1300 °C. Then, a 3-nm-thick a-Si layer was prepared over the BaSi₂ layers as a capping layer to reduce oxidation of the film. The mobility μ was measured at temperatures between 30 and 300 K using the Van der Pauw method. The applied magnetic field was 0.3T normal to the sample surface.

Results & Discussions

The hole concentration p of the samples at RT are varied from 5.0×10^{16} to 1.1×10^{19} cm⁻³ depending on $T_{\rm B}$. The temperature dependences of hole mobility of B-doped p-BaSi₂ films on Si(111) and Si(001) are shown in Figs. 1 (a) and 1(b), respectively. We can see from Fig.1 (a) that ionized impurity scattering by which μ is proportional to $T^{1.5}$, determines the μ at low temperatures in highly-doped p-BaSi₂ with $T_{\rm B}$ = 1300°C (p=5.3×10¹⁸ cm⁻³). As the doping level decreases with decreasing $T_{\rm B}$, grain boundary scattering or other scattering mechanisms play a major role at low temperatures. At high temperatures, acoustic phonon scattering decides μ for low-doped p-BaSi₂, while μ is governed by polar optical scattering or grain boundary scattering for highly-doped ones. From Fig. 1 (b), the μ of the films grown on Si(001) shows a similar tendency at high temperatures compared with the films grown on Si(111). However, in a low temperature region, ionized impurity scattering is no longer dominant. To fully reproduce the experimental results, we need to add scattering mechanisms such as intervalley scattering [3], polar optical scattering [4] and so on. Thus, further studies are mandatory to fully understand the scattering mechanisms.


References

[1] Y. Inomata, T. Suemasu, et al, Jpn. J. Appl. Phys. 43 (2004) L478-L481.

[2] M. Baba, T. Suemasu, et al, Appl. Phys. Lett. 103 (2013) 142113.

[3] K. Seeger, Semiconductor Physics (Springer, Heidelberg, 1989).

[4] R.D.S. Yadava, et al, J. Electron. Mater. 23 (1994) 1359-1378.

Fig. 1. Temperature dependence of hole mobility for B-doped p-BaSi₂ films formed on (a) Si(111) and (b) Si(001) substrates. Dash lines are a guide to the eyes.