# アモルファス Al<sub>2</sub>O<sub>3</sub>絶縁膜中の O 空孔と Al 空孔の理論的検討

## Theory of the oxygen and aluminum vacancies in amorphous Al<sub>2</sub>O<sub>3</sub> gate insulators

<sup>O</sup>小嶋 英嗣<sup>1</sup>、長川 健太<sup>1</sup>、白川 裕規<sup>1</sup>、洗平 昌晃<sup>1,2</sup>、白石 賢二<sup>1,2</sup>、

# (<sup>1</sup>名大院工、<sup>2</sup>名大未来研)

# <sup>01</sup>Eiji Kojima, <sup>1</sup>Kenta Chokawa, <sup>1</sup>Hiroki Shirakawa, <sup>1,2</sup>Masaaki Araidai, and <sup>1,2</sup>Kenji Shiraishi

#### (<sup>1</sup>Graduate School of Engineering, Nagoya University,

#### <sup>2</sup>Institute of Materials and System for Sustainability, Nagoya University)

#### E-mail: kojima@fluid.cse.nagoya-u.ac.jp

1. はじめに

GaNはSiよりも優れた物性を持つため、次世 代パワーデバイス材料として大変注目を集め ている。[1]一方で、GaN デバイスを実現させる ためには、適切な絶縁膜を決定することが重要 になる。GaN デバイスに用いる絶縁膜の候補と してはSiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, HfO<sub>2</sub>が挙げられ、SiO<sub>2</sub>とAl<sub>2</sub>O<sub>3</sub> は GaN と組み合わせた時、伝導帯のオフセット が大きいため絶縁膜として有力な候補となる。 他方で、A1<sub>2</sub>0<sub>3</sub>と HfO<sub>2</sub> は誘電率が高いという長 所を持つ。それゆえ、我々はオフセットと誘電 率の双方で良い特性を示す Al<sub>2</sub>O<sub>2</sub>が GaN デバイ スにおける非常に有望な絶縁膜だと考えた。し かし、絶縁膜を Al<sub>2</sub>O<sub>3</sub>とした GaN デバイスのリ ーク電流は絶縁膜を SiO<sub>2</sub> としたデバイスより も発生しやすい。我々はこの原因として、Al203 中に存在する0とA1空孔が影響するのではな いかと考えている。そこで本研究では第一原理 計算により、アモルファス Al<sub>2</sub>O<sub>3</sub>(a-Al<sub>2</sub>O<sub>3</sub>)中の0 と A1 空孔がどのような欠陥をもたらすのかを 研究した。

### 2. 計算方法

第一原理分子動力学計算(MD 計算)を行うこと で  $a-Al_2O_3$  を作成した。計算モデルは密度 7.76g/cm<sup>3</sup>の120原子 $\alpha$ -Al<sub>2</sub>O<sub>3</sub>スーパーセルを用 いた。(Fig. 1-a)。そして 6000K の温度で一定 時間 MD 計算を行った後に、同様の計算を室温 まで下げていき最後に構造最適化を行った。さ らに、この  $a-Al_2O_3$ から0またはA1原子を一個 取り除くことで空孔を作成し、構造最適化を実 行した(Fig. 1-b)。また、MD 計算、電子状態の 計算、構造最適化は密度汎関数法に基づく第一 原理計算コードである VASP(Vienna Ab initio Simulation Package)コード[2]を用いて計算した。 <u>3.結果と考察</u>

我々が作成した a-Al<sub>2</sub>0<sub>3</sub> 中にはそれぞれ0原子 の配位数が 2,3,4 のパターン、Al 原子の配位数 が 4,5,6 のパターンがあった。それゆえ我々は 上記の配位数それぞれにおいて 0 または Al を 取り除くことで空孔を作り、バンドギャップ中 に欠陥が形成されるかを調べた。0 空孔に関し ていえば、0の配位数に関係なく、A1の正電荷の影響で、引力ポテンシャルが0空孔近くのA1 原子に形成されたことで欠陥準位が現れた (Fig. 2-a)。また、A1空孔に関しては、A1の配 位数に関係なく、0-0結合の反結合状態が欠陥 準位を生じさせることがわかった(Fig. 2-b)。

講演では a-A1<sub>2</sub>0<sub>3</sub>の欠陥の荷電状態依存性と 空孔に不純物を導入した時の影響に関しても 議論する予定である。

#### References

- M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K. Itoh, H. Ueda, T. Uesugi, and T. Kachi, Appl. Phys. Express 1, 021104, (2008).
- [2] G. Kresse and J. Hafner, Phys. Rev. B 47, 558, (1993).



Fig.1 Calculation models. (a) Initial structure (b) Optimized structure after cooling down. Red and blue balls are O and Al atoms, respectively



Fig.2 Band figure (a) O vacancy effect: The attractive potential was formed around the Al atoms near the O vacancy (b) Al vacancy effect: anti-bonding states of O-O bonds appeared in the band gap.