Parasitic magnetization in doped Cr₂O₃ antiferromagnetic film

Tohoku Univ.¹, TDK Corporation², JASRI³, ImPACT program⁴,

°T. Nozaki^{1,} *, M. Al-Mahdawi¹, Y. Shiokawa¹, S. P. Pati¹, S. Ye¹, T. Shibata², S. Yonemura²,

T. Nakamura³, Y. Kotani³, K. Toyoki³, and M. Sahashi^{1, 4}

*E-mail: nozaki@ecei.tohoku.ac.jp

Magnetoelectric antiferromagnet Cr_2O_3 has received considerable attentions as a promising candidate for voltage controlled spintronic devices, since its antiferromagnetic spin reversal by applying both magnetic and electric fields have been demonstrated for Cr_2O_3 thin film systems [1,2]. Although Cr_2O_3 is an antiferromagnet, sometimes finite parasitic magnetization has been observed for Cr_2O_3 thin films; The origin of the parasitic magnetizations is still unclear, while it has attributed as the piezomagnetism [3], boundary magnetization [4], misfit dislocations [5], etc. We have observed positive exchange-bias phenomena in $Cr_2O_3/Pt/Co$ thin film systems [6], which are also related to the parasitic magnetization in Cr_2O_3 films. Such a parasitic magnetization can utilize to reduce antiferromagnetic spin reversal energy in Cr_2O_3/Co exchange coupling system [7,8].

Recently we observed a larger parasitic magnetization in doped Cr_2O_3 film. In this study we investigated Al- and Ir- doping effect on the parasitic magnetization. With increasing both Al- and Ir-contents, the parasitic magnetization drastically increase; by about 3.7% Al-(Ir-) dope, volume magnetization of as large as 59 (4.9) emu/cc were obtained. Interestingly, the direction of the Cr_2O_3 volume magnetization against AFM domain is different between Al-doped and Ir-doped samples. In the case of Al-doped samples, the parasitic magnetization is parallel to the surface spin, while in the case of Ir-doped samples, it is anti-parallel to the surface spin. XRD results indicate both *a* and *c* value compression for Al-doped samples, and *a* and *c* value expansions for Ir-doped samples. Such a tuning of volume magnetization make Cr_2O_3 film more attractive.

This work was partly funded by JSPS KAKENHI Grant Number 16H05975 and ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Japan Government).

- [1] T. Ashida et al., Appl. Phys. Lett., 104 (2014) 152409.
- [2] T. Ashida et al., Appl. Phys. Lett., 106 (2015) 132407.
- [3] S. Sahoo et al., Phil. Mag. Lett., 87 (2007) 259.
- [4] P. Borisov et al., Phys. Rev. B, 993 (2016) 174415.
- [5] T. Kosub et al., Nat. Commun., 8 (2017) 13985.
- [6] T. Nozaki et al., Appl. Phys. Lett., 105 (2014) 212406.
- [7] M. Al-Mahdawi et al., Phys. Rev. B, 95 (2017) 144423.
- [8] T. Nozaki et al., Jpn. J. Appl. Phys., 56 (2017) 070302.