## Fe<sub>3</sub>O<sub>4</sub>/スピネル型障壁層/Fe<sub>3</sub>O<sub>4</sub>の磁気的結合 Magnetic coupling of Fe<sub>3</sub>O<sub>4</sub>/ spinel structural barrier/ Fe<sub>3</sub>O<sub>4</sub> 筑波大物工, <sup>o</sup>(D2)田結荘 健柳原 英人

Univ. of Tsukuba, °Takeshi Tainosho<sup>1</sup>, Hideto Yanagihara

E-mail: s1630108@u.tsukuba.ac.jp

【背景】 これまでに Fe<sub>3</sub>O<sub>4</sub>の高いスピン分極率を利用して大きなトンネル磁気抵抗(TMR)比を 得ようとした研究は多くあるが、未だに大きな TMR 比は報告されていない。近年の研究により Fe<sub>3</sub>O<sub>4</sub>表面でのスピン分極率の著しい低下が指摘されていることから[1]、Fe<sub>3</sub>O<sub>4</sub>のスピン分極率が デバイス作製時の界面構造に敏感に依存するものと考えられる。従って Fe<sub>3</sub>O<sub>4</sub> と界面を構成する のに適当な物質を上手に選択することで、局所的なスピン分極率をバルク並みにさせることがで きるものと期待される。そこで本研究では、Fe<sub>3</sub>O<sub>4</sub>を上部電極および下部電極とし、バリア層にも 同じ結晶構造であるスピネル型酸化物とした全スピネル型 MTJ 素子の作製を最終目標とし、手始 めに Fe<sub>3</sub>O<sub>4</sub>/spinel barrier / Fe<sub>3</sub>O<sub>4</sub>(001)構造の磁化を平行・反平行に制御する手法の確立を目指した。

【実験方法】 $Fe_3O_4$ は、 $Fe をターゲットとして反応性 RF マグネトロンスパッタリング法により MgO(001)基板上に成膜した。成膜条件は Ar 流量 30 sccm、<math>O_2$  流量 1 sccm、成膜温度 350℃であ る。 $Fe_3O_4$ を成膜後、Al および Mg を DC スパッタリング法により 200℃以下で成膜し、酸素雰囲 気に 1 分間暴露し酸化させることでスピネル構造のバリア層((Mg,Al)-O: MAO) を得た。その後 350℃に昇温し、再び  $Fe_3O_4$ を同条件で成膜した。最後に上部  $Fe_3O_4$ の保磁力の増大を期待して Fe 薄膜を成膜した。

【実験結果】Fig.1にプロセス中の反射高速電子線回(RHEED)像を示す。Fe<sub>3</sub>O<sub>4</sub>がエピタキシャル成長していること、およびバリア層がスピネル構造になっていることが示唆される。Fig. 2 に Fe/Fe<sub>3</sub>O<sub>4</sub>/MAO/Fe<sub>3</sub>O<sub>4</sub>の磁化曲線(d)を示す。比較のためにFe<sub>3</sub>O<sub>4</sub>(a)、Fe<sub>3</sub>O<sub>4</sub>/MAO/Fe<sub>3</sub>O<sub>4</sub>(b) および Fe/Fe<sub>3</sub>O<sub>4</sub>(c)の磁化曲線も示す。(c)の保磁力は(a)のものよりも増大した。一方で、(b)

と(a) とで飽和磁化および保磁力の変化は見 られなかった。ここで、(d)の磁化曲線におい て、磁化反転が一斉に生じているように見え ることから、上下の Fe<sub>3</sub>O<sub>4</sub> に MAO 層を介した 強磁性的な磁気結合があることが示唆される。



Fig. 1 RHEED patterns of (a) Fe<sub>3</sub>O<sub>4</sub> and (b) MAO/Fe<sub>3</sub>O<sub>4</sub>
[1] M. Kurahashi *et al.*, Phys. Rev. B **81**, 193492 (2010).



Fig. 2 M-H curves of the samples