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Observation of Edge States in Nanoscale Topological Photonic Crystals
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1. Introduction

Topological photonics is a burgeoning subfield of op-
tics, inspired by the discovery of topological insulators in
condensed matter [1]. A striking feature of such materials is
the existence of edge modes robust against disorder. Such
modes are particularly attractive for chip-scale nanopho-
tonic systems for telecommunications [2]. Another appeal
is that directional edge states can be interfaced with quan-
tum emitters to realize novel many-body systems such as
the fractional quantum Hall state [3]. Building upon previ-
ous work [4], we present a new design for an all-dielectric
nanoscale topological photonic crystal and present experi-
mental results consistent with the existence of edge states.

2. Theory and Simulations

Our proposed photonic crystal design starts with a
honeycomb lattice of triangular air holes in a dielectric ma-
terial [Fig. 1(a)]. This can be considered a triangular lattice
of hexagonal clusters of six holes, whose band structure
gives rise to Dirac points. From this base design, shrinking
and expanding the hexagonal clusters opens a band gap at
the Dirac point [5]. The eigenstates at this point shows a
band inversion, indicative of non-trivial band topology.

w
N
o

w
(=3
=

N
T
=
>
(%)
c
o
3
o
o
w

(d)

Figure 1: (a) Honeycomb lattice of triangular holes. (b) Boundary
of shrunken and expanded region supports topological edge states.
(c) Band structure of the geometry in (b). (d) Finite-difference
time-domain simulation shows directional edge states.

Such a non-trivial band topology means that the bound-
ary between shrunken and expanded regions [Fig. 1(b)]
gives rise to topological edge states. A band structure cal-
culation of this system [Fig. 1(c)] shows edge bands cross-
ing the band gap. We further performed finite-difference
time-domain simulations and showed that it is possible to
excite directional edge states, where the in-plane polariza-
tion of the electric field acts as the pseudo-spin [Fig. 1(d)].
The parameters used are a,=445 nm, s=140 nm, dielectric
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constant €=13.1 and thickness A=160 nm.

3. Experimental Results

We nanofabricated our proposed design in an InP wafer
embedded with InAs quantum dots [Fig. 2(a)]. The dimen-
sions are a,;=900 nm, s=300 nm, and thickness #=280 nm.
We then measured the transmission spectrum of the topo-
logical photonic crystal waveguide by shining 780 nm light
at the grating G1 to excite the InAs quantum dots, and col-
lected the transmission of the emitted light at the second
grating G2 [Fig. 2(b)], where the edge transmission band is
consistent with simulation results.
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Figure 2: (a) Scanning electron microscope image of a nanofabri-
cated topological photonic crystal waveguide in InP. White
dashed line indicates the waveguide region. (b) Transmission
spectrum of the structure in (a), consistent with edge states.
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4. Conclusions

We present a novel all-dielectric nanoscale photonic
crystal design that gives rise to topologically robust edge
states, and show experimental transmission spectra con-
sistent with such states.
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