## Si基板上における Er,Ye,WO12(x=6)薄膜のMBE成長

Molecular Beam Epitaxy of Er<sub>x</sub>Y<sub>6-x</sub>WO<sub>12</sub> (x=6) Films on Silicon NTT 物性基礎研 <sup>1</sup>, NTT ナノフォトニクスセンタ <sup>2</sup>

<sup>○</sup>尾身博雄 <sup>1,2</sup>,俵毅彦 <sup>1,2</sup>、山本秀樹 <sup>1</sup>

NTT Basic Research Labs.<sup>1</sup>, NTT Nanophotonics Center<sup>2</sup> °H. Omi<sup>1,2</sup>, T. Tawara<sup>1,2</sup>, H. Yamamoto<sup>1</sup>

E-mail: omi.hiroo@lab.ntt.co.jp

希土類元素添加酸化物結晶は量子光通信を実現するためキーマテリアルの一つである。Y2SiO4(YSO)は電子ス ピンを持たない閉殻の $Y^{3+}$ ,  $Si^{4+}$ ,  $O^2$ イオンにより構成され、しかも、Y の核磁気モーメントは小さく、O の核磁気 モーメントは殆どゼロであるため、結果的に YSO は全スピン密度が極めて小さな理想的な非磁性の量子光学結晶 となっている。前回我々は、この YSO 単結晶をしのぐ良質な量子光学結晶を開発することを目的として、Y-Si-O 系に含まれる元素 Si をそれよりも小さな核磁気モーメントをもつ元素 W で置き換えた Y-W-O 系に注目し、その 中でも特に電子スピンを持たない W<sup>6+</sup>イオンを含む Y<sub>6</sub>WO<sub>12</sub>(立方晶)結晶を Si 基板上に MBE 成長することを試み た。今回は、この非磁性  $Y_6WO_{12}$  薄膜中に Er を添加することを目指し、その第一段階として、 $Er_6WO_{12}$ を Si(111)上に MBE 成長することを試みた。

結晶は酸素ラジカルビーム源を備えた MBE チャンバー内で Er と W を電子線蒸着することにより作製した。 蒸着レートは電子衝撃発光分光法(EIES)法により制御した。基板には Si(111)を用い、超高真空中で加熱すること

により(7×7)清浄表面を出現させた。前回報告し た  $Y_6WO_{12}$ の成長では、 $Y_6WO_{12}$ を直接 Si 上に成 長することができなかったため、先ず  $Y_2O_3$  を、 次に  $Y_6WO_{12}$ を成長することで  $Y_6WO_{12}$ 薄膜を Si基板上に成長したが、 $Er_6WO_{12}$ では Si(111)上に直 接MBE成長した。

図は、MBE 成長膜の XTEM 像である。この 図に見られる通り、 $Er_6WO_{12}$  の場合には  $Y_6WO_{12}$ の場合と異なり Si(111)上に  $Y_2O_3$  層を成長させる ことなしに急峻な界面をもつ Er<sub>6</sub>WO<sub>12</sub>を直接成長 することに成功した。得られたエピタキシャル成 長膜に対する EDX による組成分析は成長膜が  $Er_6WO_{12}$ であることを支持した。

本研究は JSPS 科研費 JP15H04130、 JP16H01057 の助成を受けている。

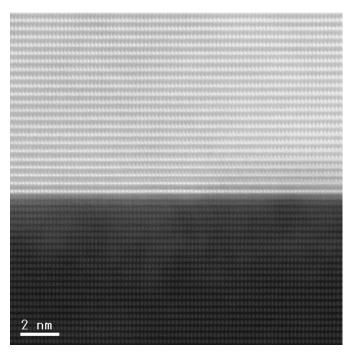



図 Er<sub>6</sub>WO<sub>12</sub>/Si(111)の断面 TEM 像