赤外吸収測定による BaSi2 エピタキシャル膜の分子振動評価

Investigation of molecular vibration in BaSi2 epitaxial films by infrared absorption measurement

九工大情報工¹,筑波大数理物質²,⁰星田裕文¹,村社尚紀¹,飯沼元輝¹,江口 元¹,末益 崇²,寺井慶和¹

Kyushu Inst. of Tech.¹, Univ. of Tsukuba.² OH. Hoshida¹, N. Murakoso¹, M. Iinuma¹, H. Eguchi¹, T. Suemasu², Y. Terai¹

E-mail: p232211h@mail.kyutech.jp

【はじめに】 $BaSi_2$ は斜方晶(D_{2h}^{18})の結晶対称性を有するが,Ba-Ba,Ba-Si 原子間の結合力が弱く,それに対し Si-Si 原子間の結合力が非常に強い.そのため Zintl 相と呼ばれ,その分子振動は主に結晶内に内包される Si クラスター構造(T_d)に由来する[1].これまで我々は, $BaSi_2$ エピタキシャル膜で偏光ラマンスペクトルを測定し,200-500 cm- 1 で観測される Si クラスター由来のラマン線のモード同定を行ってきた[2].分子振動評価では,分極率変化を伴うラマン散乱と双極子モーメント変化を伴う赤外吸収(IR)は相補的な関係であることが知られているが, $BaSi_2$ エピタキシャル膜での IR による分子振動評価は行われていない.そこで本研究では, $BaSi_2$ エピタキシャル膜の IR スペクトルを測定し,ラマン活性と赤外活性の観点から分子振動評価を行った.

【実験方法】 今回新たに、両面鏡面の Si(001)基板上に $BaSi_2(100)$ エピタキシャル膜(膜厚 50 nm)を作製し、偏光ラマンスペクトルと IR スペクトルを測定した。ラマン測定では、入射電界と散乱電界が平行となるX(YY) 不配置で、散乱強度の試料回転角度依存性を測定した。 IR 測定では、垂直入射の透過配置で、 $90-500 \text{ cm}^{-1}$ の遠赤外領域で IR スペクトルを測定した。

【結果】

Fig.1 に偏光ラマンスペクトルの一例と IR スペクトルを示す. ラマンスペクトルでは, これまで報告した通り A_1 モード, 2 重縮退のEモード, 3 重縮退の E_2 モードの6本のラマン線を観測した. また,散乱強度の回転角度依存性もこれまでの報告と一致した. 次に, IR スペクトルでは, 353 と 374 cm⁻¹でのみ吸収ピークが観測された. この 2 つの吸収位置は,ラマンで観測された 358,380 cm⁻¹の E_2 モードの位置とほぼ一致している.

活性(A)または不活性(I.A.)の観点で、本研究の実験結果と因子群解析の結果を Table I にまとめた. 因子群解析では、 A_1 モードおよび 2 重縮退のEモードは IR 不活性であり、3 重縮退のE2モードが IR 活性となる. しかし、本研究では 358 と 380 cm⁻¹ のE2モードのみ観測され、280 cm⁻¹ のE2モードが IR 不活性という因子群解析と実験結果の相違がある. よって、BaSi2 中の Si クラスターは完全な(E0)対称性を有していないことが明らかとなった. 因子群解析では、E2モードのラマンテンソルはE2(E0)、E2(E0)、E2(E0)、E3に分類されるが、実験ではこの中の 1 つが IR 不活性となっている. よって、ヘテロ界面で発生するひずみなどにより、BaSi2 中の Si クラスターがある一方向にのみひずんでいる可能性がある.

- [1] M. Somer, Z. Anorg. Allg. Chem. 626, 2478 (2000).
- [2] Y. Terai, et al., Jpn. J. Appl. Phys. 56, 05DD02 (2017).

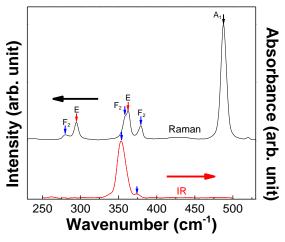


Fig.1 Polarized Raman and IR spectra in BaSi₂.

Table I Summary of Raman and IR spectra.
(A: active, I.A.: inactive.)

mode	Factor analysis of T_d symmetry		Experimental result in this study			
	Raman	IR	Raman		IR	
A ₁	Α	I.A.	А	488 cm ⁻¹	I.A.	
E (2)	A	I.A.	А	295 cm ⁻¹	I.A.	
F ₂ (3)	А	А	Α	280 cm ⁻¹	I.A.	
				358 cm ⁻¹	Α	353 cm ⁻¹
				380 cm ⁻¹		374 cm ⁻¹