低温 In₂O₃ バッファ層を用いたα-Al₂O₃ 基板上 In₂O₃ のミスト CVD 成長 Mist CVD growth of In₂O₃ films on α-Al₂O₃ using low temperature In₂O₃ buffer layer 工学院大学 ⁰(M2)小林 拓也,山口 智広,尾沼 猛義,本田 徹 Kogakuin Univ. ⁰T Kobayashi, T Yamaguchi*, T Onuma and T Honda *E-mail: ct13354@ns.kogakuin.ac.jp

背景

 In_2O_3 は導電性が高く、可視光領域に対して透明で あることから光電子デバイスにおいて重要な導電性 酸化物材料である[1]. In_2O_3 はビックスバイト構造 (cubic-In_2O_3)とコランダム構造(α -In_2O_3)の2種類を有 することで知られている. In_2O_3 の成長には、 α -Al_2O_3 基板が広く使われている[2, 3]. In_2O_3 が α -Al_2O_3 上で 成長するとき、 In_2O_3 は多結晶で成長することが報告 されているが、結晶構造の制御により、 In_2O_3 を用い た MOS(Metal-Oxide-Semiconductor)型電界効果トラ ンジスタのような、新しいデバイスの実現が可能に なる[3].

本研究では、ミスト CVD 法を用いて(0001) α -Al₂O₃ 基板上に In₂O₃薄膜を成長し、低温バッファ層の影響 を評価したので報告する. In₂O₃と α -Al₂O₃の間に低温 バッファ層を挿入することで、結晶構造の制御だけ でなく、GaN 成長で知られている表面平坦性の改善 [4]も期待される.

実験方法

In₂O₃の成長にはミスト化学気相成長(ミストCVD) 法を用いた.低温 In₂O₃ バッファ層(LT-In₂O₃)は 350℃ で 10 分間成長させた.次に LT-In₂O₃ 上に In₂O₃ 薄膜 を 550℃で1時間成長させた.参考試料として,低温 バッファ層のない In₂O₃ 薄膜および 350℃で1時間成 長させた In₂O₃ 薄膜も成長した.これらの In₂O₃ 薄膜 の評価には,X線回折(XRD)および走査型電子顕微鏡 (SEM)を用いた.

実験結果と考察

図 1 に(a)In₂O₃/(0001) α -Al₂O₃ および(b)In₂O₃/LT-In₂O₃/(0001) α -Al₂O₃ の XRD θ -2 θ 測定の結果を示す. 低温バッファ層を用いずに成長した試料では(111)配向と(100)配向の cubic-In₂O₃および(0001) 配向した α -In₂O₃ を含む多結晶 In₂O₃ の成長を確認した. 一方 で,低温バッファ層を用いた試料では,(111) 配向し た cubic-In₂O₃ と(0001)配向 α -In₂O₃ の成長は抑制さ れ,(100)配向した cubic-In₂O₃ の支配的な成長に制御 することができた. 図 2 に 350°Cで 1 時間成長した In₂O₃/(0001) α -Al₂O₃ の XRD θ -2 θ 測定の結果を示す. 成長温度 350°Cにおいて(0001) α -Al₂O₃ 上では(100)配 向した立方晶 In₂O₃の支配的な成長を確認した. この ことから,350°Cで成長した低温バッファ層上に成長 温度 550°Cで In₂O₃がホモエピタキシャル成長したこ とにより結晶構造の制御を実現したと考えられる. 図 3 に In₂O₃/(0001)α-Al₂O₃ および In₂O₃/LT-In₂O₃/(0001)α-Al₂O₃の断面 SEM 像を示す. 両試料の 膜厚は 600~700nm であった. 低温バッファ層を用い ずに成長した試料では,三次元(3D)構造を有してい るが,低温バッファ層を用いて成長した試料では, 二次元(2D)成長を確認した.

これらの結果から, In₂O₃とα-Al₂O₃との間に低温バ ッファ層を挿入することにより, In₂O₃ 膜の結晶構造 の制御および表面平坦性の改善もできることが分か った.

Fig. 3. Cross-sectional SEM images of In_2O_3 films grown (a) without and (b) with LT-buffer layer on (0001) α -Al_2O_3.

謝辞

ミストCVD成長についてご助言いただいた京都大学の藤田 静雄教授と金子健太郎博士に深く感謝する.

本研究の一部は, JSPS科研費(#JP16H06417)の援助を受けて 行われた.

参考文献

- [1] O. bierwagen and J. S.Speck, Appl. Phys. Lett. 97 (2010) 072103.
- [2] A. Gurlo et al., Chem-A. Eur. J 14 (2008) 3306.
- [3] K. Kaneko et al., Appl. Phys. Express 8 (2015) 095503.
- [4] H. Amano et al., Appl. Phys. Lett. 48 (1986) 353.