周期的 NiO ナノ構造バッファ上における β-Ga₂O₃ 薄膜の レーザー励起室温固相エピタキシー

Solid phase epitaxy of β-Ga₂O₃ on NiO self-assembly formed nanostructures by room-temperature laser process 東工大物質理工¹、 (株)豊島製作所²、神奈川県産総研³ °(B4)森田 公之¹, (M2)中村 稀星¹, 土嶺 信男², 金子 智¹, 松田 晃史¹, 吉本 護¹

Tokyo Tech. Materials¹, TOSHIMA Manu.², KISTEC³ °H. Morita¹, K. Nakamura¹, N. Tsuchimine², S. Kaneko¹, A Matsuda¹, M. Yoshimoto¹ E-mail: morita.h.ad@m.titech.ac.jp

【はじめに】 β 型酸化ガリウム (β -Ga₂O₃) は SiC や GaN より大きい約 4.9 eV のバンドギャップを持つ ワイドギャップ半導体であり、大きな絶縁破壊電界に起因する約 3400 (Si 比) というバリガ指数は -Ga₂O₃ 薄膜が将来のパワーデバイスとして有望であることを示している^[1]。我々のグループではこれま でにエピタキシャル薄膜の表面平坦性や界面急峻性の改善を狙い、酸化ニッケル (NiO) バッファ層に よる格子ミスマッチの低減と室温エキシマレーザーアニーリング (ELA) による β -Ga₂O₃ エピタキシャ ル薄膜の作製 (Fig.1) などを報告してきた^[2,3]。一方で、GaN などのワイドギャップ半導体では量子サイ ズ効果によるバンドギャップ変調などが知られおり^[4]、 β -Ga₂O₃ においてもエピタキシャルナノ構造制 御や物性変化についての知見はデバイス構築などの応用に貢献する。本研究では、NiO ナノ周期構造上 おける β -Ga₂O₃の固相エピタキシー、 β -Ga₂O₃ エピタキシャルナノ材料の結晶性や配向性などの構造や、 電子・光学特性などに及ぼす影響について検討した。

【実験及び結果】まずバッファ層となるナノワイヤなどの NiO ナノ周期構造および前駆体となる非晶 質 Ga₂O₃薄膜をパルスレーザー堆積法 (PLD) により作製した。KrF エキシマレーザー (、 パルス幅 20 ns)、および NiO と β -Ga₂O₃焼結ターゲットを使用し、雰囲気は希薄 O₂ (Pa) と した。まず高さ 0.2 nm、周期~100 nm の原子ステップを有する超平坦 α -Al₂O₃ (0001)基板上に、基板温 度 670°Cにおいて NiO ナノワイヤ (幅~20 nm、高さ~0.5 nm)をエピタキシャル成長させ、続いて室 温で Ga₂O₃を堆積した。Fig.2 に示した AFM の結果から、単結晶基板の原子ステップ端に(111)エピタ キシャル NiO のナノワイヤが成長したことが分かった^[5]。Fig.3 は NiO ナノワイヤ上に堆積した非結晶 Ga₂O₃ の AFM 観察像であり、バッファ層の形状を反映した表面が見られた。次にこの Ga₂O₃/NiO(111) ナノワイヤ/ α -Al₂O₃ (0001)薄膜に対して大気中、室温(基板非加熱)において非集光の KrF エキシマレ ーザーをエネルギー密度 250 mJ/cm² で 500 パルス照射し ELA を行った。ELA による構造変化や、表 面形状および光学的バンドギャップなどを報告する。

Fig.1 RHEED image of a β -Ga₂O₃ thin film after ELA at room-temperature.

Fig. 2 AFM image of NiO(111) nanowires as-grown on stepped α -Al₂O₃ (0001) substrates.

M. Higashiwak, Appl. Phys. Lett. 100, 013504 (2012)
[3]内田啓貴他、第 63 回応用物理学会春季学術講演会
[5] A. Sasaki, et al. Appl. Phys. 44 (2005) L256

Fig. 3 AFM image of amorphous Ga₂O₃ thin film grown on NiO(111) nanowires at room-temperature.

[2] D. Shiojiri, et al, Crystal Growth 424 (2015) 38

[4] R. Viswanatha, et al. American Phys. Soc. Vol. 72, Iss. 4(2005)