NO2 ドープダイヤモンド MOS 構造の C-V 測定と界面特性解析

C-V Measurements and Interfacial Property Analysis of NO2 Hole Doped Diamond

MOS Structure

^ONiloy Chandra Saha,[†]嘉数 誠(佐賀大院工)

^ONiloy Chandra Saha, [†]Makoto Kasu (Saga Univ.)

E-mail: ^O15596901@edu.cc.saga-u.ac.jp, [†]kasu@cc.saga-u.ac.jp

1.Introduction

Diamond is the best electronic material for the high-power operation due to its high band-gap (5.47 eV) and high break down field (>10 MVcm⁻¹). NO₂ hole doping increase surface concentration [1] and Al₂O₃ passivates the hole channel [2]. However, the mechanisms of hole doping and Al₂O₃/diamond interface are not clearly understood. In this work, we fabricate diamond MOS structures with and without NO₂ hole doping and analyze the interface properties in order to investigate NO₂ hole doping effect.

2. Fabrication Process

Diamond MOS diodes with NO₂ hole doping consist of Al gate metal, atomic-layer-deposited (ALD) 32-nm-thick Al₂O₃, and 1- μ m-thick (001) Hdiamond homoepitaxial layer, as shown in Fig.1. Another MOS diode was fabricated similarly except NO₂ exposure.

3. Experimental Results

Capacitance-voltage (C-V) characteristics of MOS structures with and without NO₂ hole doping are showing in Fig.2. Measurements were performed at room temperature in dark. Sheet carrier concentration of MOS diode with NO2 hole doping was calculated to be $1.73 \times 10^{13} \text{ cm}^{-2}$, which is four times higher than $4.5 \times 10^{12} \text{ cm}^{-2}$ of the diodes without NO₂ hole doping. C-V hysteresis were 0.27 V and 0.68 V for MOS diodes without and with NO₂ hole doping, respectively. High hole carrier concentration of NO2 hole doped MOS requires high voltage to deplete carriers and shifted its C-V curve to the positive gate voltage side by ~4 V. We speculated that higher density of holes may be trapped at the interface, which results in higher C-V hysteresis for NO₂ hole doped MOS diode.

4.Conclusion

We fabricated and compared diamond MOS didoes with and with NO₂ hole doping. Sheet carrier concentration and interface state density were higher in NO₂ hole doped MOS structure.

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (Nos. 24360124, 15H03977).

References

- M. Kubovic and M. Kasu, Appl. Phys. Express 2 (2009) 086502.
- [2] M. Kasu et al., Appl. Phys. Express 5 (2012) 025701.

Fig.1 Schematic cross section of NO_2 hole doped diamond MOS diode.

Fig. 2 C-V characteristics of MOS diodes without (blue) and with NO₂ hole doping (red).