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1. Introduction 
Intense femtosecond laser interaction with solutions in-
duces various interesting nonlinear phenomena such as 
laser ablation, plasma formation, and so on. Such phe-
nomena are sensitively dependent on experimental condi-
tions and accompanied with X-ray/ultrasound emission, 
which can be useful sources for various analytical studies in 
laboratories. Experimental conditions on the laser excita-
tions and the sample preparations are key issues not only 
for such practical developments of X-ray/ultrasound 
sources but also for detailed mechanism discussions on the 
intense laser-matter interactions, which will be introduced 
in this talk.  
 
2. Experiments 
Pulse shape/width-controlled femtosecond laser pulses (800 
nm, 35 fs at shortest, 1 kHz, linearly-pol., Mantis, Legend 
HE USP, Coherent) were tightly focused by an objective 
lens (10x) into circulated solution flow in a glass tube for 
ultrasound emission [1-3] or by an off-axis parabolic mirror 
(f ~ 50 mm) in air onto a film-like solution flow set in an 
automatic position controller for X-ray emission [4-7]. Ul-
trasound emission intensity was measured by transducers at 
the frequency of 5, 10, and 25 MHz and X-ray emission 
intensity was measured in air by a Geiger counter. A solu-
tion sample was distilled water or gold nano-colloidal sus-
pensions with different particle sizes and shapes. Double 
pulse excitations were carried out with optical delay lines 
for the time range 0-15 ns. 
 
3. Results and Discussions 
3-1. Ultrasound 
Photoacoustic signal intensity usually increases as the 
sound frequency decreases from 5 to 10 and 25 MHz and 
the intensity with gold nano-rods (12x35 nm) is higher than 
that with nano-spheres (20 nm φ) [1]. This may be because 
of the effective absorption at the wavelength of 800 nm due 
to surface plasmon absorption. Chirped-pulse irradiations 
up to 800 fs induces higher photoacoustic signal intensity 
though white light emission is most effective with the 
shortest pulse irradiation [2]. Further enhancements of the 
photoacoustic signal intensities were observed with dou-
ble-pulse irradiations and the intensity ratio for the main 
and the pre-pulses at 80:20 shows the highest enhancement 
with the time delay at 15 ns [3]. This enhancement is as-
cribed to laser ablation phenomena induced by the 
pre-pulse irradiation. 
 
3-2. X-ray 
Appropriate positions of the solution surface relative to the 
laser focus for the highest X-ray intensity, which was 
automatically measured by the position controller with a 

LabView code, shift upstream of the laser incidence as the 
laser power increases [4]. This indicates that such X-ray 
emission in air is inevitably related to the air plasma forma-
tion. Size dependence of gold nano-spheres on X-ray inten-
sity shows that the highest intensity was obtained with 40 
nm in diameter, which FDTD calculations reproduce the 
efficiency of scattering and absorption [5]. Similarly to the 
case of the ultrasound emission, chirped-pulse irradiation 
induces higher X-ray emission, which indicates the com-
plex mechanisms in the single laser pulse from the ioniza-
tion and the electron acceleration to X-ray emission though 
inner-shell excitation and bremsstrahlung [5]. Double-pulse 
irradiations with the time delay up to 15 ns show another 
X-ray intensity peak in the upstream or the downstream 
positions when the time delay is in the picosecond range or 
in the nanosecond range, respectively [6, 7]. These peaks 
are also ascribed to the phenomena induced by the 
pre-pulse irradiation such as pre-plasma formation and laser 
ablation associated with shockwave expansion and droplet 
formation.  
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