電子線照射によりホモエピタキシャル成長 n 型 GaN 中に 形成される深い準位

Deep level trap in homoepitaxial n-type GaN formed by electron beam irradiation 堀田 昌宏¹,成田 哲生²,加地 徹³,上杉 勉²,須田 淳¹ (1.京大院工,2.豊田中研,3.名大) ^oMasahiro Horita¹, Tetsuo Narita² Tetsu Kachi³, Tsutomu Uesugi², Jun Suda¹ (1.Kyoto Univ., 2.Toyota Central R&D Labs., 3.Nagoya Univ.) E-mail: horita@semicon.kuee.kyoto-u.ac.jp

窒化ガリウム(GaN)を用いた縦型パワーデバイスの研究が活発化している. 縦型デバイスは、エ ピタキシャル成長をはじめイオン注入、反応性イオンエッチングなどのプロセスを経て形成され るが、各プロセスにおいて GaN 中に種々の点欠陥が導入されることから、点欠陥と形成される深 い準位について理解を深めることは重要である. n-GaN で観測される深い準位について数多くの 報告があるが、これらの起源については、未だ統一的な見解は得られていないのが現状である. 深い準位の起源解明に向けて、我々は、GaN に意図的に点欠陥を導入し、形成される深い準位との 相関を調べることに取り組んでいる. 点欠陥は、電子線照射によって導入することができ、関連 する報告はいくつか存在する[2]が、いずれの報告においてもエネルギー700 keV 以上の電子線が 用いられている. エネルギー400 keV 以上の電子では、N および Ga 原子両方の変位が生じるが、 150~400 keV では、N 原子のみを選択的に変異させることができる. 本研究では、385 keV の電子線 照射により V_Nおよび N_Iを意図的に導入した n-GaN について深い準位の測定を行い、先行研究と 比較することで、各準位に対する V_Nや N_Iの関与について検討したので報告する.

GaN 自立基板上に MOVPE により成長した n-GaN(実効ドナー濃度 1.6×10¹⁶ cm⁻³)に対して,エ ネルギー385 keV,フルエンス 0.1~4.0×10¹⁵ cm⁻² で電子線を照射した. 照射後,Ni ショットキー電 極を形成し,DLTS および ICTS 法により電子トラップの評価を行った.得られたスペクトルを Fig. 1 に示す.ホモエピ成長 n-GaN 層に存在する E1(E_C =0.26 eV)および E3(E_C =0.58 eV)[1]の他に, DLTS では E1 よりも低温側に電子トラップ準位 EE1 が, ICTS では E3 より時定数が大きい側に電 子トラップ準位 EE2 が,それぞれ観測された.なお、フルエンスに対する E3 ピーク強度の差は, as-gown における E3 トラップ密度の試料間のばらつきによるものであり,電子線照射起因ではな いことを確認している.アレニウスプロットより,各準位のエネルギー深さは,EE1 が E_C =0.15 eV, EE2 が E_C =0.8 eV と算出された.各準位の密度は、フルエンスに対して線形に増加したことから、 これらは、電子線照射によって形成される真性点欠陥(V_N ,N₁)であると言える.エネルギー2 MeV で電子線照射を行った先行研究[2]との比較を TABLE I に示す.EE1 と EE2 については,Ref.2 にお いてほぼ同じエネルギー位置で観測されているのに対して,Ref.2 における E_C =1.14 eV のピークは、 本研究では観測されなかった.EE1,EE2 は、 V_N または N₁関連であり、Ga 原子は関与しない一方で、 E_C =0.14 eV のピークは、Ga や他の原子が関与していると言える.

[1] Tokuda, CS-ManTech 2014, 2.2 [2] Duc *et al.*, APL **105**, 102103 (2014)

【謝辞】本研究は,総合科学技術・イノベーション会議の戦略的イノベーション創造プログラム(SIP)「次世代パワ ーエレクトロニクス-GaN 縦型パワーデバイスの基盤技術開発」(管理法人: NEDO)によって実施された.

TABLE I List of DLTS peaks reported in this work and Ref. 2. Irradiation energies of electron beam are shown in parentheses.

Label	EE1	EE2	—
$E_{C} - E_{T}$ [eV]	0.12~ 0.15	0.8~ 0.9	1.14
This work (385 keV)	+	+	-
Ref. 2 (2 MeV)	+	+	+

Fig. 1 (a) DLTS and (b) ICTS spectra of n-GaN epilayers; as-grown sample and samples electron irradiated at the fluence of 1.7×10^{15} and 4.0×10^{15} cm⁻².