表面終端がダイヤモンド中の浅い NV センターへ与える影響

Influence of Surface Termination on Shallow NV Centers in Diamond

○河合空1,山野颯1,梶家美貴1,加藤かなみ1,蔭浦泰資1,稲葉優文1,福田諒介1,岡田拓真1,東又格1, 春山盛善²⁴,谷井孝至¹,山田圭介²,小野田忍²,寺地徳之³,加田渉⁴,花泉修⁴,磯谷順一⁵,川原田洋¹⁶

(1. 早大理工, 2. 量研機構, 3. 物材機構, 4. 群馬大, 5. 筑波大, 6. 早大材研)

°S. Kawai¹, H. Yamano¹, M. Kajiya¹, K. Kato¹, T. Kageura¹, M. Inaba¹, R. Fukuda¹, T. Okada¹, I. Higashimata¹,

M. Haruyama²⁴, T. Tanii¹, K. Yamada², S. Onoda², T. Teraji³, W. Kada⁴, O. Hanaizumi⁴, J. Isoya⁵, H. Kawarada¹⁶

(1. Waseda University, 2. National Institutes for Quantum and Radiological Science and Technology,

3. National Institute for Materials Science, 4. Gunma University, 5. University of Tsukuba,

6. Kagami Memorial Research Institute for Materials Science and Technology)

E-mail: sora.11-11@asagi.waseda.jp

ダイヤモンド中のNV センターは室温でのスピン操作、読み出しが可能で、ダイヤモンド表面近傍の核ス ピン^[1]の高感度検出(ナノスケール NMR)応用が期待されている。ナノスケール NMR に向けては、NMR シ グナルの大きさが、核スピンとNVセンターとの距離の3乗に反比例するために、NVセンターを可能な限 り表面近傍に作製することが望まれる。しかし、表面近傍のNV センターはコヒーレンス時間がバルクのも のと比較して短い²ことや、負に帯電した状態が不安定なことが、現状の実験で得られている。また、NVセ ンターの特性がダイヤモンド基板への表面処理によって改善する³³ことが報告されているため、より電荷状 態を安定させ、コヒーレンス時間を長くするような表面処理を確立することが NV センターを応用する上で 重要である。

本研究では、高純度ダイヤモンド基板に低加速(1-5 keV)窒素 イオン注入法によって作製した表面近傍の NV センターに対し て、表面酸化処理として熱混酸、UV オゾン処理4、酸素雰囲気で のアニール処理55を行った。また、ダイヤモンド表面を酸化する処 理のほかに、表面を窒化する処理として窒素ラジカル照射、フッ 化する処理として SF6 プラズマ処理⁶⁰を行った。図1に表面処理を 行った後の Rabi 振動コントラストの平均値を示す。 Rabi 振動コン トラストは電荷状態の1つの指標になっている。表面酸化処理後 の1.2keV イオン注入領域における、Rabi 振動コントラストの 平均値として、酸素アニール後が最も高く、0.41であった。酸 素アニール後と同様にして、窒素ラジカル照射後の Rabi 振動 コントラストの平均値は高く、1keV イオン注入領域において は0.40、2keV イオン注入領域では0.46 という結果であった。 図2には、酸素アニール後と窒素ラジカル照射後のHahn echo 測定の例を示す。電荷状態が不安定なものの Hahn echo decay は Rabi 振動のゼロレベル以下に減衰してしまうために、図2

と Hahn echo 測定結果から、酸素アニールと窒素ラジカル照射は、表面近傍の上向きのバンドベンディング

を低減し、浅いNV センターの電荷状態を安定化させたと考えられる。

[謝辞]本研究は日本学術振興会の支援(基盤研究(S)26220903及び基盤研究(B)15H03980)の助成により行われた。

CFM 装置の立ち上げに協力いただいた、Liam P. McGuinness 博士と Fedor Jelezko 教授に感謝いたします。

- [3] F. F. de Oliveira, J. Wrachtrup, et al., Appl. Phys. Lett. 107, 073107 (2015)
- [4] T. Sakai, H. Kawarada, et al., Diam. Relat. Mater. 12, 1971 (2003).
- [5] I. Lovchinsky, M. D. Lukin, et al., Science 351, 836 (2016).
- [6] C. Osterkamp, F. Jelezko, et al., Appl. Phys. Lett 106, 113109 (2015).

^[1] T. Staudacher, J. Wrachtrup, et al., Science 339, 561 (2013).

^[2] B. A. Myers, A. C. Bleszynski Jayich, et al., Phys. Rev. Lett. 113, 027602 (2014).