Ag/InZnO/Zn スペーサーを用いた CPP-GMR 素子の微細構造

Effects of layer thickness and microstructure of CPP-GMR with Ag/InZnO/Zn spacer

物材機構 ¹, ⁰中谷 友也 ¹, 佐々木 泰祐 ¹, 李 松田 ¹, 桜庭 裕弥 ¹, 古林 孝夫 ¹, 宝野 和博 ¹

NIMS¹, °T. Nakatani¹, T. T. Sasaki¹, S. Li¹, Y. Sakuraba¹, T. Furubayashi¹, K. Hono¹

E-mail: nakatani.tomoya@nims.go.jp

Transparent conductive oxide-based spacer layers for current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) sensor device have demonstrated significant improvements of MR ratio ($\Delta R/R$) and signal output of the sensors. In the previous work [1] inserting thin (<1 nm) Ag and Zn layers below and above the In-Zn-O (IZO) (~2 nm) spacer, respectively (namely, Ag/IZO/Zn spacer structure) was shown to be essential to obtain the relatively large MR output. Here we report systematic investigations of the dependence of the Ag and Zn thickness on *RA* and $\Delta R/R$, and the microstructure of the CPP-GMR sensor films with the Ag/IZO/Zn spacer.

Polycrystalline spin-valve devices were fabricated using Ta(2)/Ru(2)/IrMn(6)/CoFe(2.8)/ Ru(0.8)/CoFe(0.6)/CoFeBTa(0.8)/CMFG(2.5)/CoFe(0.4)/Ag(0.2 or 0.4)/IZO(1.6)/Zn(0.8)/CoFe (0.4)/CMFG(4)/CoFe(1)/Ru(8) (thickness in nm) films, where CMFG denotes Co₂(Mn_{0.6}Fe_{0.4})Ge Heusler alloy. As shown in Fig. 1, by using Ag/IZO/Zn trilayer spacers the MR ratio ($\Delta R/R$) of the CPP-GMR devices improved up to 22% with increased *RA* up to ~110 m Ω µm² compared to the case with the Ag₉₀Sn₁₀ metallic spacer (*RA* ~65 m Ω µm², $\Delta R/R$ ~9%).

The spatial distributions and the depth concentration profiles of In, Zn and Ag by energy dispersive x-ray spectroscopy (EDS) are shown in Fig. 2(a)-(d) for the Ag(0.4)/IZO(1.6)/Zn(0.8) spacer ($RA \sim 75 \text{ m}\Omega \text{ }\mu\text{m}^2$ and $\Delta R/R$ up to 19%). The Ag mapping shows a laterally discontinuous distribution of the Ag concentration in the IZO spacer. The Ag-rich parts may have a higher electric conductivity than that of the IZO matrix, which could be the mechanism of the increased RA and $\Delta R/R$ using the Ag/IZO/Zn spacer. An enrichment of Mn in the position of the spacer layer was also found (Fig. 4(e)), which may be due to the diffusion of Mn during the annealing at 280 °C. Since Mn in spacer layer may cause a considerable spin-flip scattering which degrades the CPP-GMR output, suppressing the Mn diffusion to the spacer layer should be the key for further improvements of CPP-GMR sensor output. Ref. [1] Nakatani et al. Appl. Phys. Express 8, 093003 (2015).

Fig. 1 RA- $\Delta R/R$ of the CPP-GMG sensors with AgSn and Ag/IZO/Zn spacers

Fig. 2 EDS mapping and depth profile of the CPP-GMR film with Ag(0.4)/IZO(1.6)Zn(0.8) spacer.