Time-resolved measurement of spin-transfer-torque-induced magnetization switching in CoFeB-MgO magnetic tunnel junctions with perpendicular easy axis

¹Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ. ²CSRN, Tohoku Univ. ³CSIS, Tohoku Univ. ⁴CIES, Tohoku Univ, ⁵WPI-AIMR, Tohoku Univ.

^oN. Ohshima¹, H. Sato^{1,2,3,4}, S. Kanai^{1,2,4}, S. Fukami^{1,2,3,4}, J. Llandro^{1,4}, F. Matsukura^{1,2,4,5},

and H. Ohno¹⁻⁵

E-mail: naoki-12@riec.tohoku.ac.jp

It was shown that single-shot time-resolved measurements is useful to understand the magnetization switching mode induced by spin-transfer-torque (STT) in nanoscale magnetic tunnel junctions with perpendicular easy axis (p-MTJ) [1, 2]. In this study, we investigate the STT-induced magnetization switching in CoFeB-MgO based p-MTJs from the time-resolved measurements.

A stack, from substrate side, $Ta(5)/Pt(5)/[Co(0.4)/Pt(0.4)]_5/Co(0.4)/Ru(0.52)/[Co(0.4)/Pt(0.4)]_2/Co(0.4)/Ta(0.3)/CoFeB(1)/MgO/CoFeB(1.6)/Ta(5)/Ru(5) is deposited on a sapphire substrate by dc/rf magnetron sputtering. Numbers in parentheses are nominal thickness in nm. The stack is processed into circular MTJs with a diameter$ *D*ranging from 40 to 125 nm on a coplanar waveguide. We apply pulse voltage*V*to the MTJ from a pulse-generator, and measure the transmitted voltage by an oscilloscope to detect magnetization dynamics during the switching. The current*I*flowing through the MTJ is also measured by the oscilloscope.

Figure 1 shows a typical temporal change in the transmitted voltage after the application of V (I = 960 µA) for parallel (P) to antiparallel (AP) switching in a 125-nm-diameter MTJ. We evaluate two characteristic times; incubation time t_A and dynamical switching time t_B after t_A (see Fig. 1). From 1000-time events at various I, we evaluate median values, τ_A and τ_B , of t_A and t_B . For P-to-AP and AP-to-P switching, both τ_A and τ_B decrease with increase of I. The dependence of τ_A and τ_B on I is compared with

that obtained from macrospin simulation. The simulation reproduces the overall trend in the switching behavior, however, $\tau_{\rm B}$ ($\tau_{\rm A}$) in P-to-AP (AP-to-P) switching shows a larger reduction with increasing *I* for the experiment than the simulation.

This work was supported in part by the R&D Project for ICT Key Technology of MEXT, ImPACT program of CSTI, and the Cooperative Research Projects of RIEC, Tohoku University.

References

T. Devolder *et al.*, Phys. Rev. B. **93**, 224432 (2016).
C. Hahn *et al.*, Phys. Rev. B. **94**.214432(2016).

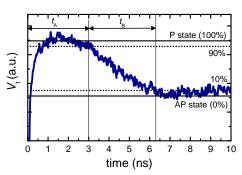


Figure 1 Transmitted voltage for parallel to anti-parallel switching in the 125-nm-diameter MTJ at applied pulse current of 960 μ A.