β-Ga₂O₃(100) 上に成長した β-(Al_xGa_{1-x})₂O₃ 薄膜のバンドギャップ評価

Evaluation of band-gap of β -(Al_xGa_{1-x})₂O₃ films grown on β -Ga₂O₃ (100) substrates

東工大物質理工学院¹,タムラ製作所²,高エネ研³,元素戦略⁴の服部真依¹,若林諒¹,佐々木公平²,

增井建和², 倉又朗人², 山腰茂伸², 堀場弘司^{3,4}, 組頭広志^{3,4}, 吉松公平¹, 大友明^{1,4}

Tokyo Tech., Dept. Chem. Sci. Eng. ¹, Tamura Corporation ², PF-KEK ³, MCES. ⁴, ^oM. Hattori¹,

R. Wakabayashi¹, K. Sasaki², T. Masui², A. Kuramata², S. Yamakoshi², K. Horiba^{3,4}, H. Kumigashira^{3,4},

K. Yoshimatsu¹, A. Ohtomo^{1,4}

E-mail: hattori.m.ag@m.titech.ac.jp

【はじめに】パワー半導体として注目されている β -Ga₂O₃に関して, β -(Al_xGa_{1-x})₂O₃とのヘテロ接合のデバイス応用が盛んに検討されている. β -(Al_xGa_{1-x})₂O₃のバンドギャップ (E_g)の組成依存性についてはすでに報告例があるが[1,2],高 Al 組成における結晶性が乏しいといった課題がある. 今回 β -Ga₂O₃(100) 基板上に成長した高結晶性薄膜の $E_g(x)$ について評価したので報告する.

【実験】パルスレーザ堆積法により, β -Ga₂O₃ (100) 基板上に β -(Al_xGa_{1-x})₂O₃ 薄膜 (x = 0.19-0.39) を、単結晶の β -Ga₂O₃ と α -Al₂O₃ ターゲットの打ち分けにより作製した. Al 組成はパルス数により 制御し、オージェ電子分光法により評価した. 薄膜の結晶構造は X 線回折 (XRD) により評価し た. また、 $E_g(x)$ は反射型電子エネルギー損失分光 (REELS) を用いて測定した.

【結果】対称反射の XRD パターンから (Fig. 1), β -(Al_xGa_{1-x})₂O₃ 薄膜は β -Ga₂O₃ (100) 基板上に β -gallia 構造を維持して成長したことが分かった. 600 回折の ω スキャンの半値幅はいずれも 0.2° 程度と高結晶性であることを確認した. Fig. 2 に REELS によって決定した β -(Al_xGa_{1-x})₂O₃ 薄膜の E_g の Al 組成依存性を示す. Al 組成が増加するにつれて E_g が増大することが明らかになった. 講 演では X 線光電子分光法による β -(Al_xGa_{1-x})₂O₃ / β -Ga₂O₃ (100)へテロ界面のバンドアライメント評 価についても発表する予定である.

5.4

[1] Z. Fabi et al., Appl. Phys. Lett. 105, 162107 (2014).

[2] R. Schmidt-Grund et al., J. Appl. Phys. 117, 165307 (2015).

Fig. 1. Out-of-plane XRD patterns of the β -(Al_xGa_{1-x})₂O₃ films grown on β -Ga₂O₃ (100) substrates.

