α-(Al_xGa_{1-x})₂O₃ バッファ層による Ga₂O₃の構造制御

Control of Ga₂O₃ Crystal Structures by introducing of α-(Al_xGa_{1-x})₂O₃ Buffer Layer

京大院工¹ ○神野 莉衣奈¹, 内田 貴之¹, 金子 健太郎¹, 藤田 静雄¹

Kyoto Univ.¹, °Riena Jinno¹, Takayuki Uchida¹, Kentaro Kaneko¹ and Shizuo Fujita¹

E-mail: jinno.riena.68a@st.kyoto-u.ac.jp

近年,高耐圧パワーデバイスや深紫外発光デバイスの材料として AIN, diamond, Ga₂O₃ などの超 ワイドバンドギャップ材料(Ultra wide-bandgap, UWBG materials)が注目を集めている. UWBG 材料 の1つである α-Ga₂O₃は,安価な sapphrie 基板上に作製可能であり[1],また In₂O₃ や Al₂O₃ との混 晶を作製することにより 3.4~8.7 eV の広範囲でのバンドギャップ変調が可能であることから,パ ワーデバイス,発光デバイスの材料として期待されている[2].また一方で,窒化物半導体と同じ 六方晶で極性があることから ε-Ga₂O₃ も近年注目され始めている[3].本研究では,α-(Al_xGa_{1-x})₂O₃ バッファ層を導入することにより,成長温度により ε-Ga₂O₃ と α-Ga₂O₃の結晶構造制御を行った.

低温バッファ層として、ミスト CVD 法を用いて c-plane sapphire 基板上に α -(Al_{0.4}Ga_{0.6})₂を 450°C で約 50 nm 成長させ、その後大気雰囲気、900°Cで 30 分間アニール処理を行った. AFM 観察の結果 から、アニール処理により RMS 粗さが 1.67 nm から 0.79 nm まで減少し平坦な表面が得られた. 作 製した α -(Al_{0.4}Ga_{0.6})₂O₃ 低温バッファ層上に成長温度を 500°C~800°Cまで変化させ Ga₂O₃の作製を 行った. 図 1 に作製した Ga₂O₃の XRD 2 θ / ω スキャンプロファイルの結果を示す. 成長温度 600°C 以下では ϵ -Ga₂O₃のピークが、600°C以上で α -Ga₂O₃(0006)のピークが確認され、成長温度により

Fig. 1 XRD 20/ ω scan profile of the Ga₂O₃ with α -(Al_{0.4}Ga_{0.6})₂O₃ buffer layers.

 α -Ga₂O₃ と ϵ -Ga₂O₃ の作製の制御に成功した. 図 2 に成 長温度 700°Cで作製した α -Ga₂O₃ の表面モフォロジー を示す. 高温での成長が可能となったことから, RMS 粗さ 0.29 nm と非常に平坦な表面が得られた. 成長温 度により α 相と ϵ 相の構造制御ができる理由には当日 議論する予定である.

D. Shinohara, *et. al.*, Jpn. J. Appl. Phys., **47** (2008) 7311
S. Fujtia, Jpn. J. Appl. Phys., **54**, 030101(2015)
Y. Oshima, *et. al.*, J. Appl. Phys., **118** (2015) 085301

Fig.2 Surface AFM images of the α -Ga₂O₃ grown at 700°C with an α -(Al_{0.4}Ga_{0.6})₂O₃ buffer layer.