SrTiO₃(100)-(V13×V13)-R33.7° 再構成表面の NC-AFM 観察

NC-AFM study of a SrTiO₃(100)-(√13×√13)-R33.7° reconstructed surface

東工大物質理工¹,東大新領域²,東北大AIMR³,阪大基礎工⁴,阪大産研⁵ [•]清水亮太¹,杉本宜昭²,赤木和人³,阿部真之⁴,森田清三⁵,一杉太郎^{1,3} Tokyo Tech¹, Univ. Tokyo,² Tohoku Univ.³, Osaka Univ.^{4,5} [•]R. Shimizu¹, Y. Sugimoto², K. Akagi³, M. Abe⁴, S. Morita⁵, and T. Hitosugi^{1,3}

E-mail: shimizu.r.af@m.titech.ac.jp

[序]: ペロブスカイト系遷移金属酸化物は多彩な物性を示すことから,高品質薄膜成長技術によるデバイス応用が期待されている.そのエピタキシャル成長用の基板として,ステップ-テラス構造及び面内方向にも原子レベルの秩序をもつSrTiO₃(100)-(√13×√13)-R33.7°(以下,(√13×√13))再構成表面を用いることにより,薄膜成長初期過程の原子スケール観察を実現してきた[1,2].出発点となる(√13×√13)再構成表面の構造については,透過電子顕微鏡[3]や走査トンネル顕微鏡/分光法(STM/STS)[4]の手法により,バルクカットしたTiO₂終端面上に余剰のTiO₂層が並ぶ「TiO₂二重層モデル(図1)」が提唱されている[3,4].このようなatomically-definedな遷移金属酸化物表面の報告は少なく,非接触原子間力顕微鏡(NC-AFM)観察例は乏しい.そこで本研究では,SrTiO₃(100)-(√13×√13)再構成表面上にてNC-AFM観察を行い,表面原子構造及び遷移金属酸化物表面におけるNC-AFMの解像メカニズムについて報告する.

[実験]: サンプルには信光社製のNbドープ(0.1 at%)したSrTiO₃(100)ステップ基板を使用し,超高真空中での抵抗加熱により,(√13×√13)再構成表面を作製した[1,4]. 放冷後,大気非曝露かつ室温にて光干渉計を用いたSiカンチレバーによるNC-AFM測定を行った.

[結果]: NC-AFM測定では3種類(Type I, II, III)の像を得た. Type IとType IIはSTM像に類似した(√13×√13)格 子像を有し,互いにコントラストが反転していたことから,探針先端の極性によって像が反転したものと 考えられる.一方で,Type IIIはSTM像では見られなかった内部構造を有しており(図2),暗い部分が最表 面に存在するTi⁴⁺列に一致することから,表面酸素との相互作用に起因した力を観測していることがわか った.この内部構造は探針先端の極性だけでは説明できないため,-OH終端探針モデルを用いて計算を行 ったところ,最表面O²⁻イオンと探針先端のH原子間の水素結合が重要な役割を担うことを見出した.この ようにNC-AFM測定を用いることで,STMでは困難な酸素アニオンの構造情報を取得できることから,真 に原子レベルでの基板表面の理解が進み,酸化物エレクトロニクスの発展に寄与できる.

Figures: (left) A proposed structural model of the SrTiO₃(100)-($\sqrt{13} \times \sqrt{13}$) surface [3,4]. (right) An NC-AFM image obtained by type III (OH-terminated) tip. 7.5×7.5 nm², $\Delta f = -9.7$ Hz, A=8.4 nm.

参考文献

[1]: Shimizu *et al.*, ACS Nano 5, 7956 (2011).
[2]: Ohsawa, Shimizu *et al.*, ACS Nano 9, 8766 (2015).
[3]: Kienzle et al., Phys. Rev. Lett. 106, 176102 (2011)
[4]: Hamada, Shimizu *et al.*, J. Am. Chem. Soc. 136, 17201 (2014).