ペロブスカイト型 V 酸化物の電気特性における格子歪みの効果

Impact of epitaxial strain for electrical properties of perovskite vanadates

東工大物質理工学院¹, 元素戦略² ⁰岡部 宏和¹, 吉松 公平¹, 大友 明^{1,2}

Tokyo Tech., Dept. Chem. Sci. Eng. ¹, MCES. ²,

°Hirokazu Okabe¹, Kohei Yoshimatsu¹, Akira Ohtomo^{1,2}

E-mail: okabe.h.ab@m.titech.ac.jp

【はじめに】ペロブスカイト型 V 酸化物 SrVO₃ (SVO)と CaVO₃ (CVO)は全率固溶し,全組成領域 にわたって金属的伝導を示す.一方,表面敏感な光電子分光の測定結果では,SVO に比べて CVO でより電子相関が強く,後者が Mott-Hubbard 転移のごく近傍に位置すると考えられてきた[1].し かし,電子比熱や帯磁率[2],光電子スペクトルの光エネルギー依存性[3]の結果では,Aサイト置 換による電子相関の差はほとんど見られていない.そこで我々は,薄膜化による格子歪みが電気 特性に及ぼす効果を検討し,その違いから双方の電子相関を比べる実験を試みた.

【実験】パルスレーザ堆積法により, Sr₂V₂O₇および Ca₂V₂O₇焼結体ターゲットを用いて, SVO 薄 膜を(LaAlO₃)_{0.3}(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} (LSAT) (100), SrTiO₃ (STO) (100), DyScO₃ (DSO) (110)基板上 に, CVO 薄膜を NdGaO₃ (NGO) (110)基板上にそれぞれ作製した. SVO 薄膜の作製では, 基板温 度は 825 ℃, チャンバー圧力は酸素分圧 1.0 × 10⁻⁶ Torr に設定した. CVO 薄膜の作製では, 基板 温度を 600-825 ℃ の間で変化させ, チャンバー圧力は酸素分圧 1.0 × 10⁻⁶ Torr に設定した.

【結果と考察】Fig. 1(a)に三種類の基板上に作製した SVO 薄膜の抵抗率の温度依存性を,Fig. 1(b) に NGO 基板上に作製した CVO 薄膜の抵抗率の温度依存性を示す.全ての薄膜は金属伝導を示す もののその温度依存性には明確な違いが現れた.フェルミ液体の理論式 $\rho = \rho_0 + AT^2$ に従うと仮定 してフィッティングを行った. A の値と面内格子歪みの関係を Fig. 2 に示す. A の値が面内格子歪 みとともに急激に増大していることは,歪みにより双方の電子状態が Mott 絶縁体側に変調された ことを示唆している.加えて,その発散挙動の比較から CVO でより電子相関が強いことが示唆さ れ,ペロブスカイト型 Ti 酸化物と同様に t_{2g} 電子の格子歪み効果[4]を観測できたと考えている. [1] I. H. Inoue *et al.*, *Phys. Rev. Lett.* 74, 2539 (1995). [2] I. H. Inoue *et al.*, *Phys. Rev. B.* 58, 4372 (1998). [3] A. Sekiyama *et al.*, *Phys. Rev. Lett.* 93, 156402 (2004). [4] K. Yoshimatsu *et al.*, *Phys. Rev. B.* 93, 195159 (2016).

Fig. 1. Temperature dependence of resistivity for (a) SVO films (~ 50 nm) on LSAT, STO, and DSO substrates and (b) CVO films on NGO substrates. T_g represents growth temperature.

Fig. 2. Relationship between coefficient *A* in the formula of $\rho = \rho_0 + AT^2$ and in-plane strain ε . The data of *A* at $\varepsilon = 0$ are referred from those reported for SVO and CVO bulks [2].