溶液法IGZOの焼成温度が伝達特性に与える影響

Effect of Sintering Temperature on the Transfer Characteristics of Solution-Processed IGZO Thin Films

⁰森本貴明¹,福田伸子³,大木義路^{1,2}(早大¹先進理工および²材研,³産総研FLEC)

°T. Morimoto¹, N. Fukuda³, Y. Ohki^{1, 2} (¹SASE and ²RIMST of Waseda Univ., ³FLEC of AIST)

E-mail: takaaki.morimoto@aoni.waseda.jp

我々は、基板の自由度が高く、低コスト化に有利な溶液法 を用いてIGZO薄膜トランジスタ(TFT)を作製し、アモルファ スシリコン以上の移動度(μ = 5.1 cm²V⁻¹s⁻¹)を達成した^[1]。今 回、さらなる特性の改善のための知見として、IGZO膜の焼成 温度が伝達特性に与える影響を調べ、その原因を解明した。

In、Ga、Znの硝酸塩と2-メトキシエタノール等の溶媒から 成るIGZO前駆体ゾル(In:Ga:Zn=6:1:3)をSiO₂膜付きのSi基板 にスピンコートした後、300、400、800℃のいずれかの温度に て2時間焼成した。接地されたソースに対して+40Vの電位を ドレインに与えた時の伝達特性を図1に示す。焼成温度の増加 に伴いV_G>0におけるI_D(以降オン電流)が増加する。

図2に、フォトルミネセンス(PL)からドナー準位(*E*_D)と価電 子帯(*E*_V)のエネルギー差(図中の青字)、紫外可視光吸収からギ ャップエネルギー(赤字)、光電子分光(UPS)から真空準位と*E*_D の差(緑字)を求め、推定したバンド構造を示す。焼成温度の上 昇とともに*E*_gが減少するが、オン電流増加の原因となりうる *E*_c、*E*_D間エネルギーの減少は見られない。

各焼成温度でのO 1s電子のXPSスペクトルを図3に、図3の スペクトルを、報告^[2]を参考に530eV(格子酸素)、531eV(酸素 空孔に隣接する酸素)、532eV(水酸基中の酸素)の3つのピーク に分離して求めた各強度の焼成温度依存性を図4に示す。焼成 温度の上昇に従い格子酸素が増加する一方、酸素空孔と水酸 基は減少する。

IGZOにおいて、ドナーとして働く酸素空孔の増加によりオン電流が増加するとの報告^[2]がある。しかし、本IGZO膜では、焼成温度上昇により逆に酸素空孔は減少するため、オン電流増加は上記と異なる機構、すなわち、電子の移動を阻害する 電子散乱中心として働く酸素空孔や水酸基^[3]が減少することがオン電流を増加させている^[4]と考えられる。

Fig. 1 Drain-source current (I_d) as a function of voltage applied to the gate electrode (V_g) , observed in IGZO TFTs sintered at 300 (Δ), 400 (\bullet), and 800 (\Box) °C.

Fig. 2 Proposed band diagrams of IGZO thin films sintered at 300 (i), 400 (ii), and 800 (iii) °C.

Fig. 3 XPS spectra of O 1s electrons, observed in IGZO films sintered at 300 (--), 400 (---), 500 (--), 600 (---), 700 (--), and 800 (---) °C.

Fig. 4 Intensities of XPS peaks at 530 (●), 531 (△), and 532 (■) eV, as a function of sintering temperature. [文献]

 S. Ogura *et al.*: Flexible and Printed Electronics 1, 045001 (2016).

K. K. Banger *et al.*: Nature Mat. **10**, 45 (2011).
E. Terzini *et al.*: Mater. Sci. Eng. B **77**, 110 (2000).
Achat 他,第77回応物学会(秋) 15p-A22-7 (2016).