Relation between Emission Power and Diameter of Spin Torque Oscillator: Micromagnetic Simulation Study

Tomohiro Tanaka¹, Atsushi Furuya¹, Yuji Uehara¹, Koichi Shimizu¹, Jun Fujisaki¹, Tadashi Ataka¹, Hirotaka Oshima², Hitoshi Kubota², Hiroshi Imamura³
Fujitsu Ltd. ¹, Fujitsu Laboratories Ltd. ², National Institute of Advanced Industrial Science and Technology (AIST)³
E-mail: tanaka-tomohiro@jp.fujitsu.com

Introduction
The spin torque oscillators (STOs) are considered as the important devices, because the STOs are expected to be applied in many fields, such as a microwave generator or a magnetic field sensor. Therefore, the development of the STOs with the high emission power and the high Q-factor is in high demand. It has, however, been reported that the emission power of a nano-pillar STO reaches to maximum around 300nm in the diameter [1]. Wang et al. have speculated that the frequency of each magnetization oscillation of the free layer is same but the phase of that is different above 300nm in the diameter, which decreases the emission power of the STOs. To elucidate this phenomenon, it is important to study the spatial magnetization dynamics of the STOs which show the decrease in the emission power at the large diameter.

Method
To investigate the mechanism of the decrease in the emission power, we analyze the STOs which have various diameters, by using micromagnetic simulations. The schematic picture of the model of STOs is shown in Fig. 1. To consider the current induced spin transfer torque effect, the magnetization dynamics is described by the Landau-Lifshitz-Gilbert-Slonczewski equation [2]:

\[
\frac{\partial \mathbf{M}}{\partial t} = -\frac{\gamma}{1+\alpha^2} \mathbf{M} \times (\mathbf{H}_{\text{eff}} + H_s \alpha \mathbf{p}) - \frac{\gamma}{1+\alpha^2} \mathbf{M} \times (\alpha \mathbf{H}_{\text{eff}} - H_s \mathbf{p}),
\]

where \(\mathbf{M}, \gamma, \alpha, \mathbf{H}_{\text{eff}}, \mathbf{p}, M_s \) are the magnetization vector, the gyro magnetic constant, the damping constant, the effective field, the unit vector of magnetization of the reference layer and the saturation magnetization respectively. Here, \(H_s \) is the strength of the spin torque: \(H_s = p_0 \hbar J (2e\delta(M_s - \lambda M \times p))^{-1} \), where \(p_0, \hbar, J, e, \delta, \lambda \) are the spin polarization factor, the reduced Plank constant, the current density, the elementary charge, the thickness of the layer, and the angle coefficient respectively.

Simulation Results
Fig. 2 shows the relation between the diameter of the STOs and the emission power obtained by the simulations. These results indicate that the peak of the emission power exists around 300nm in diameter. This is consistent with the reported experimental results [1]. Fig. 3 shows the snapshot of magnetization states in the models, diameters of which are 200nm and 400nm respectively. In 200nm, although magnetization state is different between the center region and the edge region, the magnetization dynamics is relatively coherent. In contrast, the magnetization dynamics in the diameter of 400nm is rather chaotic. We will address the mechanism which causes such degradation of the emission power and the physical properties which enhance the emission power.

References